August 16 Math 2306 sec. 52 Spring 2023

Section 1: Concepts and Terminology

Our first goal is to define what a differential equation is and identify relevant properties and the language used to talk about this subject.

A Differential Equation

Suppose $y=\phi(x)$ is a differentiable function. We know that $\frac{d y}{d x}=\phi^{\prime}(x)$ is another (related) function.

For example, if $y=\cos (2 x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$
\frac{d y}{d x}=-2 \sin (2 x)
$$

Even $d y / d x$ is differentiable with $d^{2} y / d x^{2}=-4 \cos (2 x)$. Note that this function happens to satisfy the equation

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+4 y=0 . \\
y^{\prime \prime}=-4 \cos (2 x), \quad 4 y=4 \cos (2 x) \\
y^{\prime \prime}+4 y=-4 \cos (2 x)+4 \cos (2 x)=0
\end{gathered}
$$

A Differential Equation

The equation $\frac{d^{2} y}{d x^{2}}+4 y=0$ is an example of a differential equation.

A couple of immediate questions arise:

Questions

1. If we only started with the equation, how could we determine that $\cos (2 x)$ satisfies it?
2. Also, is $\cos (2 x)$ the only possible function that y could be?

We'll be able to answer these and many more questions as we proceed.

Definition

Definition

A Differential Equation is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

We can characterize the variables in calculus terms:

Independent and Dependent Variables

An Independent Variable: will appear as one that derivatives are taken with respect to. (The x in $y=f(x)$.)
A Dependent ${ }^{a}$ Variable: will appear as one that derivatives are taken of.
(The y in $y=f(x)$.)
${ }^{\text {a }}$ Think of dependent variables as the functions.

Independent and Dependent Variables

Identify the independent and dependent variables in each differential equation shown.

$$
\begin{array}{lll}
\frac{d^{2} y}{d x^{2}}+4 y=0 & \text { Independent } _x & \text { Dependent } y \\
t^{2} y^{\prime \prime}-2 t y^{\prime}+y=\sin (t) & \text { Independent } _\frac{t}{} & \text { Dependent } y \\
2 \frac{d^{2} x}{d u^{2}}=x^{2}+u^{2} & \text { Independent } _u & \text { Dependent } \quad x
\end{array}
$$

Sometimes the independent variable isn't explicitly stated, e.g., consider $y^{\prime \prime}+4 y=0$. l'll usually just call it x or maybe t.

Classifications: Type ODE or PDE

ODEs

An ordinary differential equation (ODE) has exactly one independent variable ${ }^{a}$. For example

$$
\frac{d y}{d x}-y^{2}=3 x, \quad \text { or } \quad \frac{d y}{d t}+2 \frac{d x}{d t}=t, \quad \text { or } \quad y^{\prime \prime}+4 y=0
$$

${ }^{a}$ These are the subject of this course.

PDEs

A partial differential equation (PDE) has two or more independent variables. For example

$$
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}, \quad \text { or } \quad \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

Note on Notation

The subject of this course is Ordinary Differential Equations. So we won't be considering PDEs. The symbol ∂ is called a partial symbol. It is used to express derivatives when there are two or more independent variables. It's similar to d but indicates that one variable is being held fixed. If the function $u(x, t)$ depends on two variables x and t, then the expression

$$
\frac{\partial u}{\partial t}
$$

is read as "the "partial derivative of u with respect to t." It is defined by

$$
\lim _{\Delta t \rightarrow 0} \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}
$$

Classifications: Order

Definition

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

Examples: Identify the order of each differential equation.

$$
\begin{array}{ll}
\frac{d y}{d x}-y^{2}=3 x & \text { Order }=1^{\text {st }} \text { ODE } \\
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3} & \text { Order }=3^{\text {rd }} \text { opt } \\
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}} & \text { Order }=2^{\text {nd }}
\end{array}
$$

Notations and Symbols

We'll mostly use standard derivative notations:
Leibniz: $\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots \frac{d^{n} y}{d x^{n}}$, or
Prime \& superscripts: $\quad y^{\prime}, \quad y^{\prime \prime}, \quad \ldots \quad y^{(n)}$.

Newton's dot notation may be used if the independent variable is time. For example if s is a position function, then
velocity is $\frac{d s}{d t}=\dot{s}, \quad$ and acceleration is $\frac{d^{2} s}{d t^{2}}=\ddot{s}$

Notations and Symbols

On occasion, we'll want to reference a generic ODE. We have a couple of formats for that.

An $n^{\text {th }}$ order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

where F is some real valued function of $n+2$ variables.

Example: Express the equation $y^{\prime \prime}+4 y=0$ in the form

$$
\begin{gathered}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 \quad \text { This equation is alread, } \\
\text { in this form } \\
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=y^{\prime \prime}+4 y
\end{gathered}
$$

Notations and Symbols

Normal Form

Normal Form: If it is possible to isolate the highest derivative term, then we can write a normal form of the equation

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

$$
\text { E.g. if } n=1 \quad \frac{d y}{d x}=f(x, y), \quad \text { if } n=2 \quad \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)
$$

Example: Express the equation $y^{\prime \prime}+4 y=0$ in the normal form.

$$
\begin{array}{ll}
\text { In normal form this is } \\
y^{\prime \prime}=-4 y & f\left(x, y, y^{\prime}\right)=-4 y
\end{array}
$$

Notations and Symbols

Differential Form

If $M(x, y)$ and $N(x, y)$ are functions of the variables x and y, then an expression of the form

$$
M(x, y) d x+N(x, y) d y
$$

is called a Differential Form. A first order equation may be written in terms of a differential form as follows:

$$
M(x, y) d x+N(x, y) d y=0
$$

Note that this can be rearranged into a couple ${ }^{1}$ of different normal forms

$$
\frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)} \quad \text { or } \quad \frac{d x}{d y}=-\frac{N(x, y)}{M(x, y)}
$$

[^0]
Classifications: Linearity

Linear Differential Equation

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Example First Order:

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Example Second Order:

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Properties of a Linear ODE

$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$.

Properties of Linear ODEs

- Each of the coefficients a_{0}, \ldots, a_{n} and the right hand side g may depend on the independent variable but not the dependent one.
- y, and its derivatives can only appear as themselves (not squared, square rooted, inside some other function).
- The characteristic structure of the left side is that

$$
y, \quad \frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \quad \ldots, \quad \frac{d^{n} y}{d x^{n}}
$$

are multiplied by functions of the independent variable and added together.

Examples (Linear -vs- Nonlinear)
Verify that the two equations here are linear.

$$
\begin{array}{ll}
y^{\prime \prime}+4 y=0 & t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t} \\
& a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
a_{0}(x)=4 & a_{6}(t)=-1 \\
a_{1}(x)=0 & a_{1}(t)=2 t \\
a_{2}(x)=1 & a_{2}(t)=t^{2} \\
g(x)=0 & g(t)=e^{t}
\end{array}
$$

Examples (Linear -vs- Nonlinear)
Determine why the following two equations are nonlinear.

$$
\begin{array}{ll}
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}=x^{3} & u^{\prime \prime}+u^{\prime}=\cos u \\
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{3} y^{\prime}=x^{3} & u \text { is dependent } \\
\left(y^{\prime}\right)^{4} \text { is a nonlinear } & \cos u \text { is a } \\
\text { terin } & \text { nuntiveer term }
\end{array}
$$

Example: Classification

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a) $y^{\prime \prime}+2 t y^{\prime}=\cos t+y-y^{\prime \prime \prime}$

$$
y^{\prime \prime \prime}+y^{\prime \prime}+2 t y^{\prime}-y=\operatorname{Cos} t
$$

- independent var.

- dependent var.

- order $3^{\text {ra }}$
- linear/nonlinear linear

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(b) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant

- independent var. time
- dependent var.
- order $2^{n d}$
- linear/nonlinear non lines

[^0]: ${ }^{1}$ We have to assume that N or M is nonzero as needed.

