August 17 Math 2306 sec. 51 Fall 2022

Section 1: Concepts and Terminology

Suppose $y=\phi(x)$ is a differentiable function. We know that $d y / d x=\phi^{\prime}(x)$ is another (related) function.

For example, if $y=\cos (2 x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$
\frac{d y}{d x}=-2 \sin (2 x)
$$

Even $d y / d x$ is differentiable with $\frac{d^{2} y}{d x^{2}}=-4 \cos (2 x)$.

Suppose $y=\cos (2 x)$

Note that $\quad \frac{d^{2} y}{d x^{2}}+4 y=0$.

$$
\begin{aligned}
& y^{\prime \prime}=-4 \cos (2 x) \\
& y^{\prime \prime}+4 y=-4 \cos (2 x)+4 \cos (2 x)=0
\end{aligned}
$$

A differential equation

$$
\text { The equation } \frac{d^{2} y}{d x^{2}}+4 y=0
$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that $\cos (2 x)$ satisfies it?
Also, is $\cos (2 x)$ the only possible function that y could be?

Definition

A Differential Equation is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Solving a differential equation refers to determining the dependent variable(s)-as function(s).

Independent Variable: will appear as one that derivatives are taken with respect to.

Dependent Variable: will appear as one that derivatives are taken of.
In $y=f(x)$, the y is dependent and the x is independent.

Classifications (ODE versus PDE)

Type: An ordinary differential equation (ODE) has exactly one independent variable ${ }^{1}$. For example

$$
\begin{gathered}
\frac{d y}{d x}-y^{2}=3 x, \quad \text { or } \quad \frac{d y}{d t}+2 \frac{d x}{d t}=t, \\
\text { or } \quad y^{\prime \prime}+4 y=0
\end{gathered}
$$

${ }^{1}$ These are the subject of this course.

Classifications (ODE versus PDE)

A partial differential equation (PDE) has two or more independent variables. For example

$$
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}, \quad \text { or } \quad \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

The expression $\frac{\partial y}{\partial t}$ is read
the partial derivative of y with respect to t.
It's computed by taking the derivative of $y=f(x, t)$ while keeping the other variable, x, fixed.

Classifications (Order)

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$
\begin{array}{ll}
\frac{d y}{d x}-y^{2}=3 x & \text { lst orden ODE }^{\text {st }} \\
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3} & 3^{r d} \text { orden ODE } \\
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}} & 2^{n d} \text { orde PDDE }
\end{array}
$$

Notations and Symbols

We'll use standard derivative notations:
Leibniz: $\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots \frac{d^{n} y}{d x^{n}}, \quad$ or
Prime \& superscripts: $\quad y^{\prime}, \quad y^{\prime \prime}, \quad \ldots \quad y^{(n)}$.

Newton's dot notation may be used if the independent variable is time. For example if s is a position function, then
velocity is $\frac{d s}{d t}=\dot{s}, \quad$ and acceleration is $\frac{d^{2} s}{d t^{2}}=\ddot{s}$

Notations and Symbols

An $n^{\text {th }}$ order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

where F is some real valued function of $n+2$ variables.

Our equation $\frac{d^{2} y}{d x^{2}}+4 y=0$ has this form where

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=\frac{d^{2} y}{d x^{2}}+4 y
$$

Notations and Symbols

Normal Form: If it is possible to isolate the highest derivative term, then we can write a normal form of the equation

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

Our equation $\frac{d^{2} y}{d x^{2}}+4 y=0$ can be written in normal form.

$$
\frac{d^{2} y}{d x^{2}}=-4 y \text { note that } f\left(x, y, y^{\prime}\right)=-4 y
$$

Classifications (Linear Equations)

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

Example First Order:

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Example Second Order:

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Properties of a Linear ODE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

- Each of the coefficients a_{0}, \ldots, a_{n} and the right hand side g may depend on the independent variable but not the dependent one.
- y, and its derivatives can only appear as themselves (not squared, square rooted, inside some other function).
- The characteristic structure of the left side is that

$$
y, \quad \frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots, \frac{d^{n} y}{d x^{n}}
$$

are multiplied by functions of the independent variable and added together.

Examples of Linear ODEs

$$
\begin{array}{ll}
y^{\prime \prime}+4 y=0 & t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t} \\
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
a_{0}(x)=4 & a_{0}(t)=-1 \\
a_{1}(x)=0 & a_{1}(t)=2 t \\
a_{2}(x)=1 & a_{2}(t)=t^{2} \\
g(x)=0 & g(t)=e^{t}
\end{array}
$$

Examples of Nonlinear ODEs

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}=x^{3}
$$

$$
u^{\prime \prime}+u^{\prime}=\cos u
$$

$\left(y^{\prime}\right)^{4}$ is a nonlinear term

$$
y \frac{d y}{d x}
$$

Example: Classification
Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

$$
\begin{aligned}
& \text { (a) } y^{\prime \prime}+2 t y^{\prime}=\cos t+y-y^{\prime \prime \prime} \quad \text { rearrange } \\
& y^{\prime \prime \prime}+y^{\prime \prime}+2 t y^{\prime}-y=\cos t \\
& \text { Dependent }=y \quad \text { Linear } \\
& \text { Independent }=t \\
& \text { Order }=3^{\text {sd }}
\end{aligned}
$$

(b) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant

Dependent $=\theta$
Independent $=$ time t
order $=2^{\text {nd }}$
Linear? No, nonlinear due to $\sin \theta$ ter.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Solution or Explicit Solution

Definition: A function ϕ defined on an interval ${ }^{2} /$ and possessing at least n continuous derivatives on I is a solution of (${ }^{*}$) on l if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Example: $\phi(x)=\cos (2 x)$ is a solution of $y^{\prime \prime}+4 y=0$ on $(-\infty, \infty)$ because

- it is twice differentiable, and
- when we set $y=\cos (2 x)$ in the equation, it gives a true statement (namely, $0=0$).

[^0]Examples:
Verify that the given function is an solution of the ODE on the indicated interval. The c_{1} and c_{2} are constants.

$$
\phi(x)=c_{1} x+\frac{c_{2}}{x}, \quad I=(0, \infty), \quad x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

(1) ϕ is twice diff bible on $(0, \infty)$.
(2) Lat's sub do into the ODE.
sot

$$
\begin{aligned}
& y=c_{1} x+\frac{c_{2}}{x} \\
& y^{\prime}=c_{1}-\frac{c_{2}}{x^{2}} \\
& y^{\prime \prime}=0+\frac{2 c_{2}}{x^{3}}
\end{aligned}
$$

$$
\begin{gathered}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \\
x^{2}\left(\frac{2 c_{2}}{x^{3}}\right)+x\left(c_{1}-\frac{c_{2}}{x^{2}}\right)-\left(c_{1} x+\frac{c_{2}}{x}\right)= \\
\frac{2 c_{2}}{x}+c_{1} x-\frac{c_{2}}{x}-c_{1} x-\frac{c_{2}}{x}= \\
x\left(c_{1}-c_{1}\right)+\frac{1}{x}\left(2 c_{2}-c_{2}-c_{2}\right)= \\
x(0)+\frac{1}{x}(0)=0 \\
0=0
\end{gathered}
$$

This is a true statement, hence ϕ is a solution on I.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Implicit Solution

Definition: An implicit solution of (*) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

Recall that a relation is an equation in the two variables x and y. Something like

$$
x^{2}+y^{2}=4, \quad \text { or } \quad x y=e^{y}
$$

would be examples of relations.

[^0]: ${ }^{2}$ The interval is called the domain of the solution or the interval of definition.

