August 18 Math 2306 sec. 54 Fall 2021

Section 1: Concepts and Terminology

Suppose $y = \phi(x)$ is a differentiable function. We know that $dy/dx = \phi'(x)$ is another (related) function.

For example, if $y = \cos(2x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$\frac{dy}{dx} = -2\sin(2x).$$

Even dy/dx is differentiable with $d^2y/dx^2 = -4\cos(2x)$.

Suppose
$$y = \cos(2x) \leftarrow \lim_{n \to \infty} \lim_{n$$

Note that
$$\frac{d^2y}{dx^2} + 4y = 0.$$

= 0

A differential equation

The equation

$$\frac{d^2y}{dx^2} + 4y = 0$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that cos(2x) satisfies it? Also, is cos(2x) the only possible function that y could be?

Definition

A **Differential Equation** is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Solving a differential equation refers to determining the dependent variable(s)—as function(s).

Independent Variable: will appear as one that derivatives are taken with respect to.

Dependent Variable: will appear as one that derivatives are taken of.

Independent and Dependent Variables

Often, the derivatives indicate which variable is which: $\frac{dy}{dx} = \frac{d^{2} e^{u x^{2}}}{dt} \qquad \frac{du}{dt} \qquad \frac{dx}{dr} = \frac{dx}{dr}$ The product of the derivatives indicate which variable is which: $\frac{dy}{dx} = \frac{d^{2} e^{u x^{2}}}{dt} \qquad \frac{dx}{dt} \qquad \frac{dx}{dr} = \frac{dx}{dr}$ The product of the derivatives indicate which variable is which: $\frac{dy}{dx} = \frac{d^{2} e^{u x^{2}}}{dt} \qquad \frac{dx}{dt} \qquad \frac{dx}{dr} = \frac{dx}{dr}$ The product of the derivatives indicate which variable is which: $\frac{dy}{dx} = \frac{d^{2} e^{u x^{2}}}{dt} \qquad \frac{dx}{dt} \qquad \frac{dx}{dr} = \frac{dx}{dr}$ The product of the derivatives indicate which variable is which: $\frac{dy}{dx} = \frac{d^{2} e^{u x^{2}}}{dt} \qquad \frac{dx}{dt} \qquad \frac{dx}{dr} = \frac{dx}{dr}$ The product of the derivative indicate which variable is which: $\frac{dy}{dx} = \frac{dx}{dx} \qquad \frac{dx}{dr} \qquad \frac{dx}{dr} = \frac{dx}{dr}$ The product of the derivative indicate which variable is which: $\frac{dy}{dx} = \frac{dx}{dx} \qquad \frac{dx}{dr} \qquad \frac{dx}{dr} = \frac{dx}{dr}$ The product of the derivative indicate which variable is which: $\frac{dy}{dx} = \frac{dx}{dx} \qquad \frac{$

Classifications

Type: An ordinary differential equation (ODE) has exactly one independent variable¹. For example

$$\frac{dy}{dx} - y^2 = 3x$$
, or $\frac{dy}{dt} + 2\frac{dx}{dt} = t$, or $y'' + 4y = 0$

A partial differential equation (PDE) has two or more independent variables. For example

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}, \quad \text{or} \quad \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

a partial symbol

¹These are the subject of this course.

Classifications

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$\frac{dy}{dx} - y^2 = 3x$$

$$y''' + (y')^4 = x^3$$

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}$$

Notations and Symbols

We'll use standard derivative notations:

Leibniz:
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, ... $\frac{d^ny}{dx^n}$, or

Prime & superscripts:
$$y'$$
, y'' , ... $y^{(n)}$.

Newton's **dot notation** may be used if the independent variable is time. For example if s is a position function, then

velocity is
$$\frac{ds}{dt} = \dot{s}$$
, and acceleration is $\frac{d^2s}{dt^2} = \ddot{s}$

Notations and Symbols

An n^{th} order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$F(x,y,y',\ldots,y^{(n)})=0$$

where *F* is some real valued function of n + 2 variables.

Normal Form: If it is possible to isolate the highest derivative term, then we can write a **normal form** of the equation

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}).$$

$$\frac{d^2y}{dx^2} + 4y = 0$$

This has the form F(x,y,y',y")=0

Here F(x,y,y',y") = y" + 4y

The GDE in normal form is

Here f(x,y,y') = -49

Notations and Symbols

If n = 1 or n = 2, an equation in normal form would look like

$$\frac{dy}{dx} = f(x, y)$$
 or $\frac{d^2y}{dx^2} = f(x, y, y')$.

Differential Form: A first order equation may appear in the form

$$M(x,y) dx + N(x,y) dy = 0$$

$$M(x, y) dx + N(x, y) dy = 0$$

Differential forms may be written in normal form in a couple of ways.

$$N(x,y) dy = -M(x,y) dx$$
 $dy = \frac{dy}{dx} dx$

Divide by $N(x,y) dx$ to get:

$$\frac{dy}{dx} = -\frac{M(x,y)}{N(x,y)} \quad \text{for} \quad N(x,y) \neq 0$$

or
$$\frac{dx}{dy} = \frac{-N(x,y)}{N(x,y)}$$
 for $N(x,y) \neq 0$

Classifications

Linearity: An n^{th} order differential equation is said to be **linear** if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

- ▶ Each of the coefficients $a_0, ..., a_n$ and the right hand side g may depend on the independent variable but not the dependent one.
- ▶ y, and its derivatives can only appear as themselves (not squared, square rooted, inside some other function).
- The characteristic structure of the left side is that

$$y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}$$

are multiplied by functions of the independent variable and added together.

August 18, 2021 13/52

Examples (Linear -vs- Nonlinear)

$$y''+4y=0$$

$$a_{2}(x)y'' + a_{1}(x)y' + a_{0}(x)y = g(x)$$

$$a_{2}(x) = 1$$

$$a_{1}(x) = 0$$

$$a_{2}(x) = 4$$

$$g(x) = 0$$

$$a_{3}(x) = 0$$

$$a_{4}(x) = 0$$

$$a_{5}(x) = 4$$

$$g(x) = 0$$

$$g(x) = 0$$

$$a_{\cdot}(x) = 0$$

$$t^2 \frac{d^2 x}{dt^2} + 2t \frac{dx}{dt} - x = e^t$$

$$a_{0}(4) = -1$$

Examples (Linear -vs- Nonlinear)

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^4 = x^3$$

linear Lon

Both

$$u'' + u' = \cos u$$

non livear tem uis dependent