
August 19 Math 2306 sec. 53 Fall 2024

Section 2: Initial Value Problems

Definition: Initial Value Problem

An Initial Value Problem (IVP) consists of a differential equation cou-
pled with a certain type of additional conditions. For Example: Solve
the equation a

dny
dxn = f (x , y , y ′, . . . , y (n−1)) (1)

subject to the initial conditions

y(x0) = y0, y ′(x0) = y1, . . . , y (n−1)(x0) = yn−1. (2)

The problem (1)–(2) is called an initial value problem.

aon some interval I containing x0.

Note that y and its derivatives are evaluated at the same initial x value of x0.



Examples for n = 1 or n = 2

First order case:
dy
dx

= f (x , y), y(x0) = y0

Second order case:
d2y
dx2 = f (x , y , y ′), y(x0) = y0, y ′(x0) = y1
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Example
Given that y = c1x +

c2

x
is a 2-parameter family of solutions of the

ODE x2y ′′ + xy ′ − y = 0 on the interval (0,∞), solve the initial value
problem

x2y ′′ + xy ′ − y = 0, y(1) = 1, y ′(1) = 3.

We already know that y = c1x + c2
x solves the ODE for any choice of

the parameters c1 and c2. We need to determine the values of those
parameters so that y satisfies the initial conditions. Note that

y(1) = c1(1) +
c2

1
= 1 =⇒ c1 + c2 = 1

y ′(1) = c1 −
c2

12 = 3 =⇒ c1 − c2 = 3

Solving this algebraic system, one finds that c1 = 2 and c2 = −1.

The solution to the IVP is y = 2x − 1
x
.
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Graphical Interpretation:
dy
dt

= f (t , y), y(t0) = y0

Figure: This is a direction field for the ODE
dy
dt

= −2ty . The little line
segments show the slope that a solution to this equation would have as it
passes through each point.



Graphical Interpretation:
dy
dt

= f (t , y), y(t0) = y0

Figure: The ODE
dy
dt

= −2ty coupled with an initial condition y(t0) = y0 determines a

specific curve passing through the point (t0, y0) and whose slope at each point
satisfies the ODE. Each colored curve corresponds to a different choice of (t0, y0).



Example

The relation y2 − 2x2y = C defines a 1-parameter family of solu-
tions to the ODE y ′ = 2xy

y−x2 .

Find an implicit solution to the initial value problem

dy
dx

=
2xy

y − x2 , y(1) = −2.
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A Numerical Solution

Consider a first order initial value problem

dy
dx

= f (x , y), y(x0) = y0.

In later sections, we’ll have methods for solving some first order ODEs
by hand. Here, we look at a method for approximating the solution
called Euler’s Method. The idea is simple
▶ Start with the point (x0, y0) that is given,
▶ use the ODE to make a tangent line L(x) at (x0, y0),
▶ increment the independent variable to a new point x1

▶ approximate the solution y using the tangent line,
y(x1) ≈ y1 = L(x1),

▶ rinse and repeat!



Euler’s Method:
dy
dx

= f (x , y), y(x0) = y0

Let’s go through an example, and then derive the general formula used
for Euler’s method.

For the next few slides, we will consider the example

dy
dx

= xy , with initial condition y(0) = 1

Note that
f (x , y) = xy , x0 = 0, and y0 = 1

We will build the solution in increments of 0.25. (This number is
chosen for this example and can be changed.)

The true solution for this simple example is well know, so the true curve can be plotted
along with the approximations. But keep in mind that, in general, the exact solution
isn’t known. (It it was, you wouldn’t need to approximate it.)



Example
dy
dx

= xy , y(0) = 1

Figure: We know that the point (x0, y0) = (0,1) is on the curve. And the slope
of the curve at (0,1) is m0 = f (0,1) = 0 · 1 = 0.
Note: The gray curve is the true solution to this IVP. It’s shown for reference.



Example
dy
dx

= xy , y(0) = 1

Figure: So we draw a little tangent line (we know the point and slope). Then
we increase x , say x1 = x0 + h, and approximate the solution value y(x1) with
the value on the tangent line y1. So y1 ≈ y(x1). (I’m taking h = 0.25.)



Example
dy
dx

= xy , y(0) = 1

Figure: We take the approximation to the true function y at the point
x1 = x0 + h to be the point on the tangent line.



Example
dy
dx

= xy , y(0) = 1

Figure: When h is very small, the true solution and the tangent line point will
be close. Here, we’ve zoomed in to see that there is some error between the
exact y value and the approximation from the tangent line.



Example
dy
dx

= xy , y(0) = 1

Figure: Now we start with the point (x1, y1) and repeat the process. We get
the slope m1 = f (x1, y1) and draw a tangent line through (x1, y1) with slope
m1.



Example
dy
dx

= xy , y(0) = 1

Figure: We go out h more units to x2 = x1 + h. Pick the point on the tangent
line (x2, y2), and use this to approximate y(x2). So y2 ≈ y(x2)



Example
dy
dx

= xy , y(0) = 1

Figure: If we zoom in, we can see that there is some error. But as long as h is
small, the point on the tangent line approximates the point on the actual
solution curve.



Example
dy
dx

= xy , y(0) = 1

Figure: We can repeat this process at the new point to obtain the next point.
We build an approximate solution by advancing the independent variable and
connect the points (x0, y0), (x1, y1), . . . , (xn, yn).



Euler’s Method: An Algorithm & Error
We start with the IVP

dy
dx

= f (x , y), y(x0) = y0.

We build a sequence of points that approximates the true solution y

(x0, y0), (x1, y1), (x2, y2), . . . , (xN , yN).

We’ll take the x values to be equally spaced with a common difference
of h. That is

x1 = x0 + h
x2 = x1 + h = x0 + 2h
x3 = x2 + h = x0 + 3h

...
xn = x0 + nh



Euler’s Method: An Algorithm

dy
dx

= f (x , y), y(x0) = y0.

Notation:
▶ yn will denote our approximation, and

▶ y(xn) will denote the exact solution (that we don’t know)

To build a formula for the approximation y1, let’s approximate the
derivative at (x0, y0).

f (x0, y0) =
dy
dx

∣∣∣∣
(x0,y0)

≈ y1 − y0

x1 − x0

(Notice that’s the standard formula for slope. )



Euler’s Method: An Algorithm

dy
dx

= f (x , y), y(x0) = y0.

Let’s get a formula for y1.

We know x0 and y0, and we also know that x1 = x0 + h so that
x1 − x0 = h. Thus, we can solve for y1.

y1 − y0

x1 − x0
=

y1 − y0

h
= f (x0, y0)

=⇒ y1 − y0 = hf (x0, y0)

=⇒ y1 = y0 + hf (x0, y0)
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Euler’s Method: An Algorithm

dy
dx

= f (x , y), y(x0) = y0.

We can continue this process. So we use
y2 − y1

h
= f (x1, y1) =⇒ y2 = y1 + hf (x1, y1)

and so forth. We have

Euler’s Method Formula: The nth approximation yn to the exact
solution y(xn) is given by

yn = yn−1 + hf (xn−1, yn−1)

with (x0, y0) given in the original IVP and h the choice of step
size.



Euler’s Method Example:
dy
dx

= xy , y(0) = 1

Take h = 0.25 to find an approximation to y(1).
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We'll have to finish this next time. 


