August 20 Math 2306 sec. 52 Fall 2021

We have

- Defined what a differential equation is,
- distinguished ordinary (ODE) from partial (PDE) differential equations,
- defined the order of an ODE, and
- defined the classification of linear versus nonlinear.

Example: Classification
Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a) $y^{\prime \prime}+2 t y^{\prime}=\cos t+y-y^{\prime \prime \prime}$ Index var $\frac{t}{y}$
deperi van order is 3

$$
\begin{aligned}
& a(t) y^{\prime \prime \prime}+b(t) y^{\prime \prime}+c(t) y^{\prime}+d(t) y=f(t) \\
& y^{\prime \prime \prime}+y^{\prime \prime}+2 t y^{\prime}-y=\cos t \quad \text {, } \cdot \text { s. ne }
\end{aligned}
$$

(b) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant Indef. variable time (we com it t) depend vanickle θ order 2

It's nonlinear

$$
a(t) \theta^{\prime \prime}+b(t) \theta^{\prime}+c(t) \theta=g(t)
$$

$\sin \theta$ is a nonlinear term since θ is dependent.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: A function ϕ defined on an interval ${ }^{1}$ I and possessing at least n continuous derivatives on / is a solution of (*) on / if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of $\left(^{*}\right)$ is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

[^0]Examples:
Verify that the given function is an solution of the ODE on the indicated interval.

$$
\phi(t)=3 e^{2 t}, \quad I=(-\infty, \infty), \quad \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0
$$

The ODE is $2^{\text {nd }}$ order. $\phi=3 e^{2 t}$ has derivations of all orders on $(-\infty, \infty)$:
well substitute ϕ into the ODE. Set

$$
y=\phi(t)=3 e^{2 t}
$$

we need y^{\prime} and $y^{\prime \prime}$.

$$
\begin{aligned}
& y=3 e^{2 t} \\
& y^{\prime}=3 e^{2 t} \quad(2)=6 e^{2 t}
\end{aligned}
$$

$$
\begin{gathered}
y^{\prime \prime}=12 e^{2 t} \\
\text { So } y^{\prime \prime}-y^{\prime}-2 y=0 \\
12 e^{2 t}-6 e^{2 t}-2\left(3 e^{2 t}\right) \stackrel{?}{=} 0 \\
12 e^{2 x}-6 e^{2 t}-6 e^{2 t}= \\
0=0
\end{gathered}
$$

we get a true statement, so $y=3 e^{2 t}$ is a solution to $y^{\prime \prime}-y^{\prime}-2 y=0$.

Example: Implicitly Defined Solutions)
Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$
y^{2}-2 x^{2} y=1, \quad \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
$$

well assume that the relation holds, ie. x and y satisfy $y^{2}-2 x^{2} y=1$. and show that then y also satisfies the $O D E$. well use implicit differentiation.

$$
\begin{aligned}
& \frac{d}{d x}\left(y^{2}-2 x^{2} y\right)=\frac{d}{d x}(1) \\
& 2 y \frac{d y}{d x}-2\left(2 x y+x^{2} \frac{d y}{d x}\right)=0
\end{aligned}
$$

It may not be possible to clearly identify the domain of definition of an implicit solution.

Let's isolate $\frac{d y}{d x}$.

$$
\begin{aligned}
& y \frac{d y}{d x}-2 x y-x^{2} \frac{d y}{d x}=0 \\
& \left(y-x^{2}\right) \frac{d y}{d x}=2 x y \\
& \frac{d y}{d x}=\frac{2 x y}{y-x^{2}} \quad \text { assuring } y-x^{2} \neq 0
\end{aligned}
$$

Hence if y satisfies $y^{2}-2 x^{2} y=1$, then it also satisfies the $O D E$.

Function vs Solution

The interval of defintion has to be an interval.

Consider $y^{\prime}=-y^{2}$. Clearly $y=\frac{1}{x}$ solves the DE. The interval of defintion can be $(-\infty, 0)$, or $(0, \infty)$-or any interval that doesn't contain the origin. But it can't be $(-\infty, 0) \cup(0, \infty)$ because this isn't an interval!

Often, we'll take I to be the largest, or one of the largest, possible intervasl. It may depend on other information.

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.

Systems of ODEs

Sometimes we want to consider two or more dependent variables that are functions of the same independent variable. The ODEs for the dependent variables can depend on one another. Some examples of relevant situations are

- predator and prey
- competing species
- two or more masses attached to a system of springs
- two or more composite fluids in attached tank systems

Such systems can be linear or nonlinear.

Example of Nonlinear System

$$
\begin{aligned}
\frac{d x}{d t} & =-\alpha x+\beta x y \\
\frac{d y}{d t} & =\gamma y-\delta x y
\end{aligned}
$$

This is known as the Lotka-Volterra predator-prey model. $x(t)$ is the population (density) of predators, and $y(t)$ is the population of prey. The numbers α, β, γ and δ are nonnegative constants.
This model is built on the assumptions that

- in the absence of predation, prey increase exponentially
- in the absence of predation, predators decrease exponentially,
- predator-prey interactions increase the predator population and decrease the prey population.

Example of a Linear System

$$
\begin{aligned}
& \frac{d i_{2}}{d t}=-2 i_{2}-2 i_{3}+60 \\
& \frac{d i_{3}}{d t}=-2 i_{2}-5 i_{3}+60
\end{aligned}
$$

Figure: Electrical Network of resistors and inductors showing currents i_{2} and i_{3} modeled by this system of equations.

Systems of ODEs

There are various approaches to solving a system of differential equations. These can include

- elimination (try to eliminate a dependent variable),
- matrix techniques,
- Laplace transforms ${ }^{2}$
- numerical approximation techniques

[^1]Arbitrary Constants
Show that for any choice of constants c_{1} and $c_{2}, y=c_{1} x+\frac{c_{2}}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

Subs dilute

$$
\begin{aligned}
& y=c_{1} x+c_{2} x^{-1} \\
& y^{\prime}=c_{1}-c_{2} x^{-2} \\
& y^{\prime \prime}=2 c_{2} x^{-3} \\
& x^{2} y^{\prime \prime}+x y^{\prime}-y \stackrel{?}{=} 0 \\
& x^{2}\left(2 c_{2} x^{-3}\right)+x\left(c_{1}-c_{2} x^{-2}\right)-\left(c_{1} x+c_{2} x^{-1}\right) \stackrel{?}{=} 0
\end{aligned}
$$

$$
2 c_{2} x^{-1}+c_{1} x-c_{2} x^{-1}-c_{1} x-c_{2} x^{-1} \stackrel{?}{=} 0
$$

Collect x and x^{-1}

$$
\begin{array}{r}
x^{-1}\left(2 c_{2}-c_{2}-c_{2}\right)+x\left(c_{1}-c_{1}\right)= \\
0=0
\end{array}
$$

So $y=c_{1} x+\frac{c_{2}}{x}$ solves the $O D E$ for any choice of C_{1} and C_{2}.

Some Terms

- A parameter is an unspecified constant such as c_{1} and c_{2} in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

[^0]: ${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

[^1]: ${ }^{2}$ We'll consider this later.

