August 22 Math 3260 sec. 53 Fall 2025

Section 1.1 The Vector Space R²

- ▶ We have defined vectors in R² and are working with scalars in R.
- ▶ We defined **vector addition** $\langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle = \langle x_1 + y_1, x_2 + y_2 \rangle$,
- ▶ and scalar multiplication $c\langle x_1, x_2 \rangle = \langle cx_1, cx_2 \rangle$.
- ► The **zero vector**, $\vec{0}_2$, in R^2 is the additive identity, and
- each vector \vec{x} has an **additive inverse** vector, $-\vec{x}$.
- ▶ Given a collection of vectors, $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$, a **linear combination** is any vector of the form $c_1\vec{x}_1 + c_2\vec{x}_2 + \dots + c_k\vec{x}_k$ where c_1, \dots, c_k are scalars.

Section 1.1 The Vector Space R²

- We defined the **magnitude** of a vector $\|\vec{x}\| = \|\langle x_1, x_2 \rangle\| = \sqrt{x_1^2 + x_2^2}$.
- A unit vector is a vector of magnitude 1.
- Two nonzero vectors \vec{x} and \vec{y} are **parallel** if and only if there exists a scalar c such that $\vec{y} = c\vec{x}$.
- ▶ The previous point guarantees that given any nonzero vector \vec{x} , we can find a unit vector parallel to \vec{x} .

Now, we want to come up with a characterization for vectors in \mathbb{R}^2 that are perpendicular.

Perpendicular Vectors

We would like to arrive at a characterization for vectors that are perpendicular. By perpendicular, we mean that the standard representations of the vectors form a right angle.

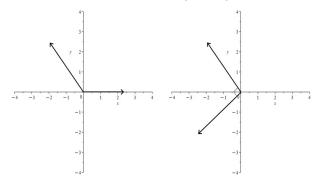
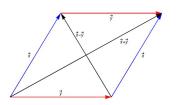


Figure: What should be true about nonzero vectors $\vec{x} = \langle x_1, x_2 \rangle$ and $\vec{y} = \langle y_1, y_2 \rangle$ if they make an angle of 90°?

Perpendicular

We can look at the parallelogram determined by two vectors \vec{x} and \vec{y} .



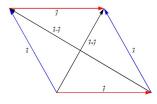


Figure: If the angle between the vectors is acute, then $\|\vec{x} + \vec{y}\| > \|\vec{x} - \vec{y}\|$, and if the angle between the vectors is obtuse, then $\|\vec{x} + \vec{y}\| < \|\vec{x} - \vec{y}\|$.

If the vectors are perpendicular, then the parallelogram will be a rectangle. A rectangle has diagonals of equal length.

Perpendicular

The diagonals of the parallelogram have lengths $\|\vec{x} + \vec{y}\|$ and $\|\vec{x} - \vec{y}\|$.

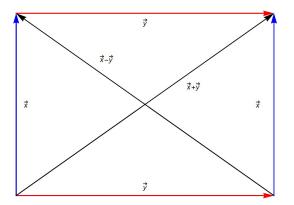


Figure: If the angle between the vectors 90°, then $\|\vec{x} + \vec{y}\| = \|\vec{x} - \vec{y}\|$.

Perpendicular

The nonzero vectors \vec{x} and \vec{y} are perpendicular if and only if

$$\|\vec{x} + \vec{y}\| = \|\vec{x} - \vec{y}\|.$$

Theorem: The nonzero vectors $\vec{x}=\langle x_1,x_2\rangle$ and $\vec{y}=\langle y_1,y_2\rangle$ are perpendicular if and only if

$$x_1y_1 + x_2y_2 = 0.$$

Proof

Let's prove that $\|\vec{x} + \vec{y}\| = \|\vec{x} - \vec{y}\|$ is equivalent to $x_1y_1 + x_2y_2 = 0$.

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 &= \|(x_1 + y_1, x_2 + y_2)\|^2 \\ &= (x_1 + y_1)^2 + (x_2 + y_2)^2 \\ &= (x_1^2 + 2x_1y_1 + y_1^2 + x_2^2 + 2x_2y_2 + y_2^2 \\ \|\vec{x} + \vec{y}\|^2 &= x_1^2 + y_1^2 + x_2^2 + 2(x_1y_1 + x_2y_2) \\ \|\vec{x} - \vec{y}\|^2 &= x_1^2 + y_1^2 + x_2^2 + y_2^2 - 2(x_1y_1 + x_2y_2) \end{aligned}$$

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

August 21, 2025

11x+5/2= x2+ y2+ x2+ y2 = 11x-5/2. And since

112+11=112-211.

The lix+5/12=11x-3/112, ad

The
$$\|\vec{x} + \vec{y}\|^2 = \|\vec{x} - \vec{y}\|^2$$
, ad

$$x_1^2 + y_1^2 + x_2^2 + y_2^2 + 2(x_1y_1 + x_2y_2) = x_1^2 + y_1^2 + x_2^2 + y_2^2 - 2(x_1y_1 + x_2y_2)$$

a(x,y,+x2y2) = -2 (x,y,+x2y2)

We've Shown that if
$$x_1y_1+x_2y_2=0$$
,

then $||\vec{x}+\vec{y}||=||\vec{x}-\vec{y}||$. And we've shown

that if $||\vec{x}+\vec{y}||=||\vec{x}-\vec{y}||$, then

 $x_1y_1+x_2y_2=0$.

Dot Product

The product $x_1y_1 + x_2y_2$ is significant. This represents a new operation on R^2 .

The Dot Product

Given the pair of vectors $\vec{x} = \langle x_1, x_2 \rangle$ and $\vec{y} = \langle y_1, y_2 \rangle$ in R^2 , the **dot product** of \vec{x} and \vec{y} , denoted

$$\vec{x} \cdot \vec{y}$$
,

is given by

$$\vec{x}\cdot\vec{y}=x_1y_1+x_2y_2.$$

Remark: The dot product of a pair of vectors in a scalar¹.

Remark: Two nonzero vectors are perpendicular if their dot product is zero.

¹The dot product is an example of something called a scalar or an inner product.

Example: Determine whether the given vectors are parallel, perpendicular or neither.

1.
$$\vec{u} = \langle 2, 3 \rangle$$
 and $\vec{v} = \langle 6, -4 \rangle$
Are they parallel? is $\vec{u} = \vec{c} \vec{v}$ for some \vec{c} ?
No, they're not parallel.

2.
$$\vec{z} = \langle 1, -3 \rangle$$
 and $\vec{w} = \langle -2, 6 \rangle$

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ 9 0 ○

Example: Determine whether the given vectors are parallel, perpendicular or neither.

3.
$$\vec{x} = \langle 1, -2 \rangle$$
 and $\vec{y} = \langle 2, 2 \rangle$

The size neither parallel nor per pendicular.

4. $\vec{p} = \langle a, -b \rangle$ and $\vec{q} = \langle b, a \rangle$, where a, b are real numbers (not both zero) $\vec{p} \cdot \vec{q} = \alpha(b) + (-b)\alpha = 0$ The gree per per licular.

Could thus be ponalled?

$$\vec{p} = c\vec{q} \implies a : cb = ad - b = ca$$
, $a \neq 0$ because the give $n + b = c\vec{q} \implies a : cb = ad - b = ca$, $a \neq 0$ because the give $n + b = c\vec{q} \implies a : cb = c(-ca) = -c^2a$
 $\vec{p} = c\vec{q} \implies a : cb = ad - b = ca$, $a \neq 0$ because the give $\vec{p} = c\vec{q} = c^2a$

August 21, 2025

Orthogonality

We should observe that for any vector $\vec{x} = \langle x_1, x_2 \rangle$ in \mathbb{R}^2 , the dot product

$$\vec{x}\cdot\vec{0}_2=0.$$

But the zero vector doesn't define an angle with \vec{x} . We have a generalization of the notion of perpendicularity.

Orthogonality

We say that two vectors \vec{x} and \vec{y} in R^2 are **orthogonal** if

$$\vec{x} \cdot \vec{y} = 0.$$

