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Section 1.1 The Vector Space R?

We have defined vectors in R? and are working with scalars in R.

We defined vector addition (xi, xo) + (y1, ¥2) = (X1 + Y1, X2 + y2),
and scalar multiplication c(x1, x2) = (cx1, cX2).

The zero vector, 0, in R? is the additive identity, and

each vector X has an additive inverse vector, —X.

Given a collection of vectors, {X1, Xz, ..., Xk}, a linear combination is
any vector of the form ¢ Xy + c2Xo + - - - + ck Xk Where ¢y, ..., ck are

scalars.
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Section 1.1 The Vector Space R?

> We defined the magnitude of a vector ||[X| = ||(x1, X2)|| = /X2 + X3.

> A unit vector is a vector of magnitude 1.

> Two nonzero vectors X and y are parallel if and only if there exists a
scalar ¢ such that y = cX.

> The previous point guarantees that given any nonzero vector X, we can
find a unit vector parallel to X.

Now, we want to come up with a characterization for vectors in R? that are
perpendicular.
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Perpendicular Vectors

We would like to arrive at a characterization for vectors that are
perpendicular. By perpendicular, we mean that the standard

representations of the vectors form a right angle.
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Figure: What should be true about nonzero vectors X = (x1, %) and y = (y1, y) if

they make an angle of 90°7?
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Perpendicular

We can look at the parallelogram determined by two vectors X and y.

Figure: If the angle between the vectors is acute, then ||X + y/|| > ||X — ¥||, and if the angle
between the vectors is obtuse, then ||X + y/|| < [|X — ¥

If the vectors are perpendicular, then the parallelogram will be a rectangle. A
rectangle has diagonals of equal length.
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Perpendicular
The diagonals of the parallelogram have lengths ||X + y|| and ||X — ¥||.
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Figure: If the angle between the vectors 90°, then ||X + J/|| = ||X — 7|
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Perpendicular

The nonzero vectors X and y are perpendicular if and only if

IX+ ¥l = 11X = yII

Theorem: The nonzero vectors X = (x1, x2) and y = (y1, o) are
perpendicular if and only if

X1y + X2)2 = 0.
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Proof

Let’s prove that || X + y|| = ||X — ¥/|| is equivalent to x1y1 + Xoy»> = 0.
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Dot Product

The product x; y; + Xay2 is significant. This represents a new operation on R2.

The Dot Product

Given the pair of vectors X = (xy,X) and y = (y1, y») in R?, the dot
product of X and ¥, denoted

—

Xy
is given by
Xy =xiy1 + Xa)o.

Remark: The dot product of a pair of vectors in a scalar’.

Remark: Two nonzero vectors are perpendicular if their dot product is zero.

"The dot product is an example of something called a scalar or an innerproduct.
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Example: Determine whether the given vectors are parallel, perpendicular or

neither.
1. 4= (2,3)and vV = (6,—4) R
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Example: Determine whether the given vectors are parallel, perpendicular or

neither.

3. X=(1,-2)andy = (2,2
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Orthogonality

We should observe that for any vector X = (xq, xz) in R?, the dot
product

X-0p = 0.

But the zero vector doesn’t define an angle with X. We have a
generalization of the notion of perpendicularity.

Orthogonality

We say that two vectors X and ¥ in R? are orthogonal if

X-j=0.
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