August 23 Math 2306 sec. 51 Fall 2021

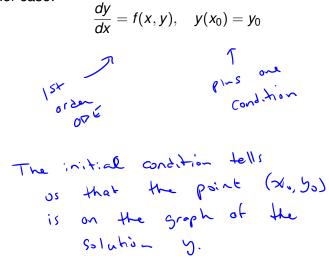
Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation ¹

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}) \tag{1}$$

subject to the initial conditions


$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (2)

The problem (1)–(2) is called an *initial value problem* (IVP).

August 20, 2021 1/22

¹on some interval *I* containing x_0 .

IVPs First order case:

August 20, 2021 2/22

IVPs

Second order case:

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

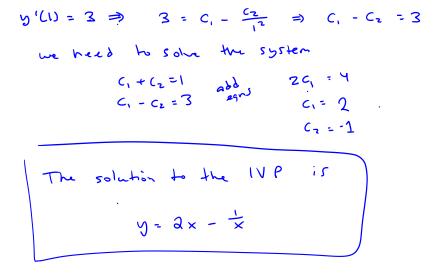
$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_1$$

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_1$$

$$\frac{d^2y}{dx^2}$$

2

Example


Given that $y = c_1 x + \frac{c_2}{x}$ is a 2-parameter family of solutions of $x^2 y'' + xy' - y = 0$, solve the IVP

$$x^2y'' + xy' - y = 0$$
, $y(1) = 1$, $y'(1) = 3$

be have the solutions to the ODP
part,
$$y = c_1 \times + \frac{c_2}{X}$$
, we have to find
numbers c_1 and c_2 to satisfy the
initial conditions (IC).
 $y = c_1 \times + \frac{c_2}{X}$, $y' = c_1 - \frac{c_2}{X^2}$
 $y(1) = 2 \implies 1 = c_1(1) + \frac{c_2}{1} \implies c_1 + c_2 = 1$

August 20, 2021 4/22

イロト 不得 トイヨト イヨト 二日

Graphical Interpretation n

Figure: Each curve solves y' + 2xy = 0, $y(0) = y_0$. Each colored curve corresponds to a different value of y_0

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Numerical Solution

Consider a first order initial value problem

$$\frac{dy}{dx}=f(x,y),\quad y(x_0)=y_0.$$

Euler's Method is a scheme for finding an approximate solution to this IVP. The basic idea is that we

- Start with the known point (x_0, y_0) on the solution curve,
- use the slope (given by $\frac{dy}{dx}$) to get a tangent line there, and
- approximate a nearby point on the curve by the tangent line.
- march forward a littel bit, and repeat.

4 D K 4 B K 4 B K 4 B K

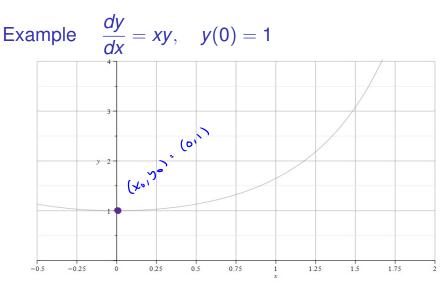


Figure: We know that the point $(x_0, y_0) = (0, 1)$ is on the curve. And the slope of the curve at (0, 1) is $m_0 = f(0, 1) = 0 \cdot 1 = 0$.

Note: The gray curve is the true solution to this IVP. It's shown for reference

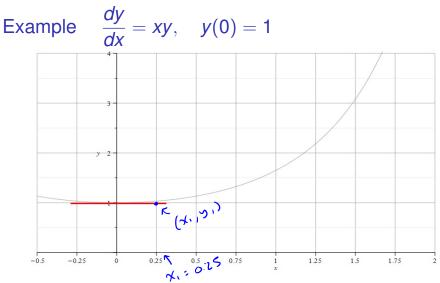


Figure: So we draw a little tangent line (we know the point and slope). Then we increase x, say $x_1 = x_0 + h$, and approximate the solution value $y(x_1)$ with the value on the tangent line y_1 . So $y_1 \approx y(x_1)$.

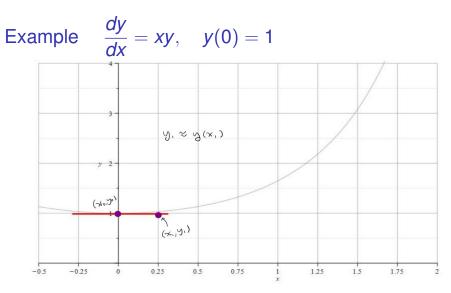


Figure: We take the approximation to the true function *y* at the point $x_1 = x_0 + h$ to be the point on the tangent line.

э

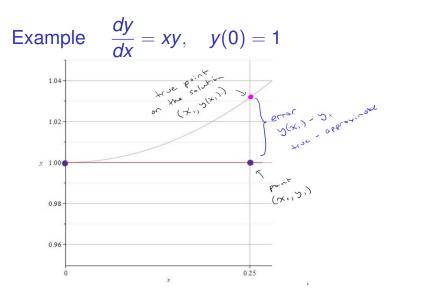


Figure: When *h* is very small, the true solution and the tangent line point will be close. Here, we've zoomed in to see that there is some error between the exact *y* value and the approximation from the tangent line \mathbf{x}_{1} , \mathbf{x}_{2} , \mathbf{x}_{3} , \mathbf{y}_{4} , \mathbf{y}_{5} , \mathbf{y}_{6} , \mathbf{y}_{7} , \mathbf{y}_{1} , \mathbf{y}_{1} , \mathbf{y}_{2} , \mathbf{y}_{3} , \mathbf{y}_{6} , \mathbf{y}_{7} , \mathbf{y}_{1} , \mathbf{y}_{1} , \mathbf{y}_{2} , \mathbf{y}_{3} , \mathbf{y}_{3} , \mathbf{y}_{1} , \mathbf{y}_{2} , \mathbf{y}_{3} , $\mathbf{$

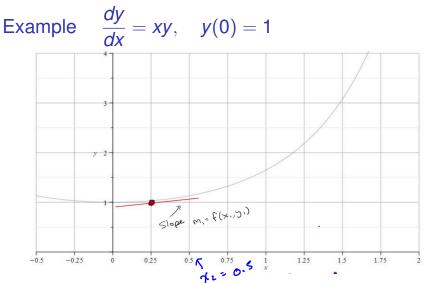


Figure: Now we start with the point (x_1, y_1) and repeat the process. We get the slope $m_1 = f(x_1, y_1)$ and draw a tangent line through (x_1, y_1) with slope m_1 .

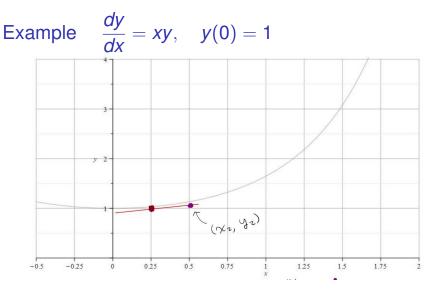


Figure: We go out *h* more units to $x_2 = x_1 + h$. Pick the point on the tangent line (x_2, y_2) , and use this to approximate $y(x_2)$. So $y_2 \approx y(x_2)$

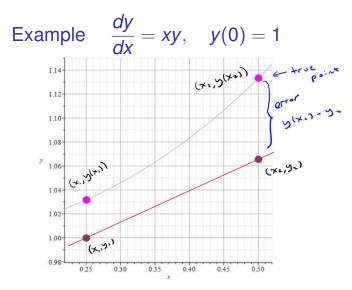


Figure: If we zoom in, we can see that there is some error. But as long as *h* is small, the point on the tangent line approximates the point on the actual solution curve.

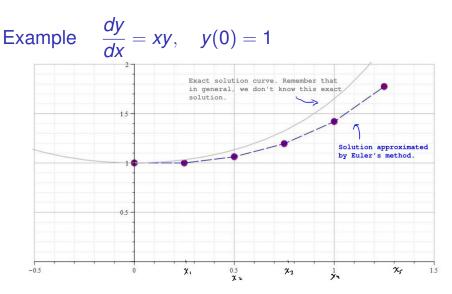


Figure: We can repeat this process at the new point to obtain the next point. We build an approximate solution by advancing the independent variable and connect the points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$.

Euler's Method: An Algorithm & Error We start with the IVP

$$\frac{dy}{dx}=f(x,y),\quad y(x_0)=y_0.$$

We build a sequence of points that approximates the true solution y

$$(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N).$$

We'll take the *x* values to be equally spaced with a common difference of *h*. That is

$$x_1 = x_0 + h$$

$$x_2 = x_1 + h = x_0 + 2h$$

$$x_3 = x_2 + h = x_0 + 3h$$

$$\vdots$$

$$x_n = x_0 + nh$$

イロン イロン イヨン イヨン

August 20, 2021

16/22

Euler's Method: An Algorithm

$$\frac{dy}{dx}=f(x,y), \quad y(x_0)=y_0.$$

Notation:

- > y_n will denote our approximation, and
- $y(x_n)$ will denote the exact solution (that we don't know)
- To build a formula for the approximation y_1 , let's approximate the derivative at (x_0, y_0) .

$$f(x_0, y_0) = \left. \frac{dy}{dx} \right|_{(x_0, y_0)} \approx \frac{y_1 - y_0}{x_1 - x_0}$$

(Notice that's the standard formula for slope.)

イロト イポト イヨト イヨト

Euler's Method: An Algorithm

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0.$$

Let's get a formula for y_1 .

$$x_1 - x_0 = h$$

 $\frac{y_{1}-y_{0}}{x_{1}-x_{0}} = \frac{y_{1}-y_{0}}{h} = f(x_{0},y_{0})$

$$\Rightarrow y_1 - y_0 = hf(x_0, y_0)$$

August 20, 2021 18/22

э

Euler's Method: An Algorithm

$$\frac{dy}{dx}=f(x,y),\quad y(x_0)=y_0.$$

We can continue this process. So we use

$$\frac{y_2 - y_1}{h} = f(x_1, y_1) \implies y_2 = y_1 + hf(x_1, y_1)$$

and so forth. We have

Euler's Method Formula: The n^{th} approximation y_n to the exact solution $y(x_n)$ is given by

$$y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$$

with (x_0, y_0) given in the original IVP and *h* the choice of step size.

Euler's Method Example: $\frac{dy}{dx} = xy$, y(0) = 1

Take h = 0.25 to find an approximation to y(1).

$$X_{n} = 0 \quad md \quad h = 0.25 \quad so \quad X_{n} = 1$$

$$X_{n} = 0, \quad y_{n} = 1 \quad h = 0.25 \quad f(x_{n}, y_{n}) = x'y$$

$$y_{n} = y_{n} + h f(x_{n}, y_{n}) = 1$$

$$X_{n} = 0.25 \quad (0.1) = 1$$

$$X_{n} = 0.25 \quad (0.25 \cdot 1) = 1.06 \quad 25$$

$$y_{2} = y_{n} + h f(x_{n}, y_{n}) = 1 + 0.25 \quad (0.25 \cdot 1) = 1.06 \quad 25$$

$$x = x = 0$$

August 20, 2021 20/22

$$\begin{aligned} x_{z} &= 0.5, \quad y_{z} &= 1.0625 \\ y_{3} &= y_{z} + h f(x_{z}, y_{z}) \\ &= 1.0625 + 0.25 (0.5 + 1.0625) = 1.19531 \\ x_{3} &= 0.75, \quad y_{3} &= 1.19531 \\ y_{4} &= y_{3} + h f(x_{7}, y_{3}) \\ &= 1.19531 + 0.25 (0.75 + 1.19531) \\ &= 1.41943 \\ y_{4} &= 1.41913 \approx y(1). \end{aligned}$$

August 20, 2021 21/22

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ ○ ○

The true y(1)=Je ~ 1.64872