August 23 Math 2306 sec. 52 Fall 2021

We’ll close out section 1 (Concepts & Terminology) with a few terms.

> A parameter is an unspecified constant such as ¢y and ¢» in the
last example.

» A family of solutions is a collection of solution functions that only
differ by a parameter.

» An n-parameter family of solutions is one containing n
parameters (e.g. ¢1X + % is a 2 parameter family).
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Some final terms

> A particular solution is one with no arbitrary constants in it.
» The trivial solution is the simple constant function y = 0.

> An integral curve is the graph of one solution (perhaps from a
family).
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Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation

d"y
ax”

subject to the initial conditions

=Gy ys Ly (1)

y(x0) = Yo, Y'(X0) =1, ...,y(”_1)(x0) = Yn_1. 2)

The problem (1)—(2) is called an initial value problem (IVP).

Ton some interval / containing xo.
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IVPs

First order case:
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IVPs

Second order case:
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Example
Given that y = ¢1x + 2 is a 2-parameter family of solutions of
x?y" 4+ xy' — y = 0, solve the IVP

Py Exy -y =0, y(1)=1, y(1)=3
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Graphical Interpretation

Figure: Each curve solves y’ + 2xy = 0, y(0) = yy. Each colored curve
corresponds to a different value of y;
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A Numerical Solution

Consider a first order initial value problem

d
df}; =f(x,y), y(x)=Yo.

Euler’s Method is a scheme for finding an approximate solution to this
IVP. The basic idea is that we

» Start with the known point (xg, yp) on the solution curve,

> use the slope (given by %) to get a tangent line there, and
» approximate a nearby point on the curve by the tangent line.
» march forward a littel bit, and repeat.
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d
Example —y:xy, y(0) =1
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Figure: We know that the point (xo, ¥o) = (0, 1) is on the curve. And the slope
of the curve at (0,1) is mg = f(0,1) =0-1=0.

Note: The gray curve is the true solution to this IVP. It's shown for reference.

August 20, 2021 10/24



dy B
Example & =xy, y(0)=1
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Figure: So we draw a little tangent line (we know the point and slope). Then

we increase x, say x; = Xp + h, and approximate the solution value y(x1) with
the value on the tangent line yy. So y1 =~ y(xy).

August 20, 2021 11/24



3
Y= k)
2]
5
(P
K
(ﬂmg.)
05 025 0 025 05 075 i 125 15 135 >

Figure: We take the approximation to the true function y at the point
X1 = Xo + hto be the point on the tangent line.
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Example g =X y(0) =1
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Figure: When h is very small, the true solution and the tangent line point will
be close. Here, we’'ve zoomed in to see that there is some error between the
exact y value and the approximation from the tangent line.
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Example —=xy, y(0)=1

o —
pa Y
ol et

~(I)5 —GIJS 0 055 ﬂli U,;S l‘ léS 115 l‘?i
Figure: Now we start with the point (xq, 1) and repeat the process. We get
the slope my = f(x1, y1) and draw a tangent line through (x1, y1) with slope
my.
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Example —=xy, y(0)=1
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Figure: We go out h more units to xo = x; + h. Pick the point on the tangent
line (X2, ¥2), and use this to approximate y(x2). So y» ~ y(x2)
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Example — =x 0)=1
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Figure: If we zoom in, we can see that there is some error. But as long as his
small, the point on the tangent line approximates the point on the actual
solution curve.
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Example ax =Y y(0) =1
e
Exact solution curve. Remember that
in general, we don't know this exact /.
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Figure: We can repeat this process at the new point to obtain the next point.
We build an approximate solution by advancing the independent variable and
connect the points (Xo, ¥o), (X1, Y1), - -, (Xn, ¥n)-

August 20, 2021 17/24



Euler’s Method: An Algorithm & Error
We start with the IVP

d
T =1, ()= Yo

We build a sequence of points that approximates the true solution y
(X07y0)a (X1>}’1), (X27y2)> sy (XN»YN)-

We’'ll take the x values to be equally spaced with a common difference
of h. That is

Xy = Xo—l—h
Xo = X1—|—h:X0—|—2h
X3 = Xo+h=xp+3h

Xn = Xg+ nh
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Euler’s Method: An Algorithm

d
T =1y, ()= Yo

Notation:
» y, will denote our approximation, and

> y(x,) will denote the exact solution (that we don’t know)

To build a formula for the approximation y1, let’'s approximate the
derivative at (xo, ¥o)-

dy LYo

f(x0, y0) = P

(X0,¥0)

(Notice that’s the standard formula for slope. )
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Euler’s Method: An Algorithm

d
di; =f(x,y), y(x)=Yo.

Let’s get a formula for y;. X, X7 N

M\‘O° ) \0' -Do
X, =X~ “ - ? (X%‘.?V)

V. -y WE&,ve)

Se \l \OO-(' \'\'G (Xw \903

August 20, 2021

20/24



Euler’s Method: An Algorithm

d
di; =f(x,y), y(x)=Yo.

We can continue this process. So we use

Yo—Y1
= f
and so forth. We have

(x1,y1) = Yo =Yy1+ hf(x1,y1)

Euler’s Method Formula: The n' approximation y, to the exact
solution y(xy) is given by

Yn = Yn—1+ hf(Xn_1, ¥n—1)

with (xo, o) given in the original IVP and h the choice of step
size.

y
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Euler's Method Example: % =xy, y(0)=1

Take h = 0.25 to find an approximation to y(1).
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The -\.rv-L' b(_(),i@ 2 b4y’ Fr2

We'll talk about the error on Wednesday.
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