August 23 Math 2306 sec. 54 Fall 2021

We'll close out section 1 (Concepts \& Terminology) with a few terms.

- A parameter is an unspecified constant such as c_{1} and c_{2} in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).

Some final terms

- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation ${ }^{1}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} . \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

[^0]IVPs
First order case:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

$$
\operatorname{lic}_{\text {or } \frac{\operatorname{den}}{a>t}}
$$

\uparrow
one initial Condition

$$
(I C)
$$

The IC $y\left(x_{0}\right)=y$. tells us that the point $\left(x_{0}, y_{0}\right)$ is on the graph of the solution to this IVP.

IVPs
Second order case:

$$
\begin{aligned}
& \quad \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1} \\
& \begin{array}{l}
\text { 2 initide conditions } \\
z^{n y} \\
\text { order } \boldsymbol{y}
\end{array}
\end{aligned}
$$

For example, it y is the position of a particle moving along a line at time x, the ODE tells us about the acelleration. y_{0} is the initial position and y_{1} is the initial velocity.

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

We already have the solutions to the ODE, $y=c_{1} x+\frac{c_{2}}{x}$. We need to find numbers C_{1} and C_{2} that make $y(1)=1$ and $y^{\prime}(1)=3$.

$$
\begin{aligned}
& y=c_{1} x+\frac{c_{2}}{x}, y^{\prime}=c_{1}-\frac{c_{2}}{x^{2}} \\
& y(1)=1 \Rightarrow 1=c_{1}(1)+\frac{c_{2}}{1} \Rightarrow c_{1}+c_{2}=1
\end{aligned}
$$

$$
y^{\prime}(1)=3 \Rightarrow 3=c_{1}-\frac{c_{2}}{1^{2}} \Rightarrow c_{1}-c_{2}=3
$$

we have to solve the system
$c_{1}+c_{2}=1$
add

$$
c_{1}-c_{2}=3
$$

$$
\begin{aligned}
2 c_{1} & =4 \\
c_{1} & =2 \\
c_{2} & =-1
\end{aligned}
$$

The solution to the IVP is

$$
y=2 x-\frac{1}{x}
$$

Graphical Interpretation

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

A Numerical Solution

Consider a first order initial value problem

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

Euler's Method is a scheme for finding an approximate solution to this IVP. The basic idea is that we

- Start with the known point (x_{0}, y_{0}) on the solution curve,
- use the slope (given by $\frac{d y}{d x}$) to get a tangent line there, and
- approximate a nearby point on the curve by the tangent line.
- march forward a littel bit, and repeat.

Example $\quad \frac{d y}{d x}=x y, \quad y(0)=1$

Figure: We know that the point $\left(x_{0}, y_{0}\right)=(0,1)$ is on the curve. And the slope of the curve at $(0,1)$ is $m_{0}=f(0,1)=0 \cdot 1=0$. Note: The gray curve is the true solution to this IVP. It's shown for reference.

Example $\quad \frac{d y}{d x}=x y, \quad y(0)=1$

Figure: So we draw a little tangent line (we know the point and slope). Then we increase x, say $x_{1}=x_{0}+h$, and approximate the solution value $y\left(x_{1}\right)$ with the value on the tangent line y_{1}. So $y_{1} \approx y\left(x_{1}\right)$.

Example $\quad \frac{d y}{d x}=x y, \quad y(0)=1$

Figure: We take the approximation to the true function y at the point $x_{1}=x_{0}+h$ to be the point on the tangent line.

Example $\quad \frac{d y}{d x}=x y, \quad y(0)=1$

Figure: When h is very small, the true solution and the tangent line point will be close. Here, we've zoomed in to see that there is some error between the exact y value and the approximation from the tangent line.

Example $\quad \frac{d y}{d x}=x y, \quad y(0)=1$

Figure: Now we start with the point (x_{1}, y_{1}) and repeat the process. We get the slope $m_{1}=f\left(x_{1}, y_{1}\right)$ and draw a tangent line through $\left(x_{1}, y_{1}\right)$ with slope m_{1}.

Example $\quad \frac{d y}{d x}=x y, \quad y(0)=1$

Figure: We go out h more units to $x_{2}=x_{1}+h$. Pick the point on the tangent line $\left(x_{2}, y_{2}\right)$, and use this to approximate $y\left(x_{2}\right)$. So $y_{2} \approx y\left(x_{2}\right)$

Example $\quad \frac{d y}{d x}=x y, \quad y(0)=1$

Figure: If we zoom in, we can see that there is some error. But as long as h is small, the point on the tangent line approximates the point on the actual solution curve.

Example
 $\frac{d y}{d x}=x y, \quad y(0)=1$

Figure: We can repeat this process at the new point to obtain the next point. We build an approximate solution by advancing the independent variable and connect the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Euler's Method: An Algorithm \& Error

We start with the IVP

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

We build a sequence of points that approximates the true solution y

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right) .
$$

We'll take the x values to be equally spaced with a common difference of h. That is

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
x_{2} & =x_{1}+h=x_{0}+2 h \\
x_{3} & =x_{2}+h=x_{0}+3 h \\
& \vdots \\
x_{n} & =x_{0}+n h
\end{aligned}
$$

Euler's Method: An Algorithm

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

Notation:

- y_{n} will denote our approximation, and
- $y\left(x_{n}\right)$ will denote the exact solution (that we don't know)

To build a formula for the approximation y_{1}, let's approximate the derivative at $\left(x_{0}, y_{0}\right)$.

$$
f\left(x_{0}, y_{0}\right)=\left.\frac{d y}{d x}\right|_{\left(x_{0}, y_{0}\right)} \approx \frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

(Notice that's the standard formula for slope.)

Euler's Method: An Algorithm

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

Let's get a formula for y_{1}.

$$
h=x_{1}-x_{0}
$$

$$
\begin{aligned}
& \frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{y_{1}-y_{0}}{h}=f\left(x_{0}, y_{0}\right) \\
\Rightarrow y_{1}-y_{0} & =h f\left(x_{0}, y_{0}\right)
\end{aligned}
$$

so $y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)$

Euler's Method: An Algorithm

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

We can continue this process. So we use

$$
\frac{y_{2}-y_{1}}{h}=f\left(x_{1}, y_{1}\right) \quad \Longrightarrow \quad y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right)
$$

and so forth. We have

Euler's Method Formula: The $n^{\text {th }}$ approximation y_{n} to the exact solution $y\left(x_{n}\right)$ is given by

$$
y_{n}=y_{n-1}+h f\left(x_{n-1}, y_{n-1}\right)
$$

with $\left(x_{0}, y_{0}\right)$ given in the original IVP and h the choice of step size.

Euler's Method Example: $\frac{d y}{d x}=x y, \quad y(0)=1$
Take $h=0.25$ to find an approximation to $y(1)$.

$$
x_{0}=0 \text { and } h=0.25 \text { so } x_{4}=1 .
$$

$$
\begin{aligned}
x_{0} & =0, y_{0}=1 \quad f(x, y)=x y \\
y_{1} & =y_{0}+h f\left(x_{0}, y_{0}\right) \\
& =1+0.25(0.1)=1
\end{aligned}
$$

$$
\begin{aligned}
x_{1} & =0.25, \quad y_{1}=1 \\
y_{2} & =y_{1}+h f\left(x_{1,} y_{1}\right) \\
& =1+0.25(0.25 .1)=1.0625
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=0.5, y_{2}=1.0625 \\
& y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right) \\
&=1.0625+0.25(0.5 \cdot 1.0625)=1.19531 \\
& x_{3}=0.75, \quad y_{3}=1.19531 \\
& y_{4}=y_{3}+h f\left(x_{3}, y_{3}\right) \\
&=1.19531+0.25(0.75 \cdot 1.19531) \\
&=1.41943 \\
& y(1) \approx y_{4}=1.41943
\end{aligned}
$$

The true $y(1)=\sqrt{e}=1.64872$

[^0]: ${ }^{1}$ on some interval / containing x_{0}.

