August 24 Math 2306 sec. 51 Fall 2022

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$\frac{dy}{dx} = g(x).$$

For example, solve the ODE

$$\frac{dy}{dx} = 4e^{2x} + 1. \qquad \Rightarrow \qquad \frac{dy}{dx} dx = (4e^{2x} + 1) dx$$

$$y = \int (ye^{2x} + 1) dx' = 2e^{2x} + x + C$$

Separable Equations

Definition: The first order equation y' = f(x, y) is said to be **separable** if the right side has the form

$$f(x,y)=g(x)h(y).$$

That is, a separable equation is one that has the form

$$\frac{dy}{dx} = g(x)h(y).$$

Determine which (if any) of the following are separable.

(a)
$$\frac{dy}{dx} = x^3y$$

 yes $y(x) = x^3$ and $y(y) = y$

(b)
$$\frac{dy}{dx} = 2x + y$$
 Not separable

(c)
$$\frac{dy}{dx} = \sin(xy^2)$$
 Not separable

(d)
$$\frac{dy}{dt} - te^{t-y} = 0$$
 $\frac{dy}{dt} = te^{t-y} = te^{t-y} = te^{t-y}$

Yes, $g(t) = te^{t}$ $f(t) = e^{t}$

Solving Separable Equations

Recall that from $\frac{dy}{dx} = g(x)$, we can integrate both sides

$$\int \frac{dy}{dx} dx = \int g(x) dx.$$

Recall that if y is a differentiable function of x, then the differential $dy = \frac{dy}{dx} dx$. We have

$$\int dy = \int g(x) dx \implies y = G(x) + C$$

where G is an antiderivative of g.

We'll use this observation!

Solving Separable Equations

Let's assume that it's safe to divide by h(y) and let's set p(y) = 1/h(y). We solve (usually find an implicit solution) by **separating the variables**.

$$\frac{dy}{dx} = g(x)h(y)$$

Divide by h(y)

Multiply by dx

$$\frac{1}{h(y)} \frac{dy}{dx} = g(x)$$

$$\frac{1}{h(y)} \frac{dy}{dx} = g(x) dx$$

This is a one parameter family of solutions defined implicitly.