August 24 Math 2306 sec. 51 Fall 2022

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x)
$$

For example, solve the ODE
$\frac{d y}{d x}=4 e^{2 x}+1 . \quad \Rightarrow \underbrace{\frac{d y}{d x}}_{\partial y} d x=\left(4 e^{2 x}+1\right) d x$

$$
\begin{array}{r}
y=\int\left(4 e^{2 x}+1\right) d x=2 e^{2 x}+x+C \\
y=2 e^{2 x}+x+C \text { are parameter family of solutions }
\end{array}
$$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y$
yes

$$
\begin{aligned}
& g(x)=x^{3} \text { and } \\
& h(y)=y
\end{aligned}
$$

(b) $\frac{d y}{d x}=2 x+y$

Not separable
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right)$ Not sepanable
(d) $\frac{d y}{d t}-t e^{t-y}=0 \quad \frac{d y}{d t}=t e^{t-y}=t e^{t} e^{-y}$

Yes, $g(t)=t e^{t}$ and $h(y)=e^{-y}$

Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\int \frac{d y}{d x} d x=\int g(x) d x
$$

Recall that if y is a differentiable function of x, then the differential $d y=\frac{d y}{d x} d x$. We have

$$
\int d y=\int g(x) d x \quad \Longrightarrow \quad y=G(x)+C
$$

where G is an antiderivative of g.

We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

$$
\begin{aligned}
& \frac{d y}{d x}= g(x) h(y) \\
& \text { (1) Divide by haltipl> by } d x \text { (y) use } d y=\frac{d y}{d x} d x \\
& \frac{1}{h(y)} \frac{d y}{d x}=g(x) \\
& \underbrace{\frac{1}{h(y)}}_{p} \underbrace{\frac{d y}{d x}} d x=g(x) d x
\end{aligned}
$$

$$
\begin{aligned}
p(y) d y & =g(x) d x \quad \text { Integrate } \\
\int p(y) d y & =\int g(x) d x \\
P(y) & =G(x)+C
\end{aligned}
$$

This is a one parameter family of solutions defined implicitly.

