August 23 Math 2306 sec. 51 Fall 2021

Section 2: Initial Value Problems

We'll recall that **Euler's Method** is a way of approximating the solution to a first order IVP

$$\frac{dy}{dx}=f(x,y), \quad y(x_0)=y_0.$$

Euler's Method Formula: The n^{th} approximation y_n to the exact solution $y(x_n)$ is given by

$$y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$$

with (x_0, y_0) given in the original IVP and h the choice of step size.

The value $y_n \approx y(x_n)$ where $y(x_n)$ is the true solution to the IVP at $X=X_n$.

Euler's Method Example: $\frac{dy}{dx} = xy$, y(0) = 1

Take h = 0.25 to find an approximation to y(1).

We went through this process and found that $y_4 = 1.41943$ was our approximation to y(1).

The true¹ $y(1) = \sqrt{e} = 1.64872$. This raises the question of how good our approximation can be expected to be.

¹The exact solution $y = e^{x^2/2}$.

Fuler's Method: Frror

First, let's define what we mean by the term *error*. There are a couple of types of error that we can talk about. These are²

and

$$\mbox{Relative Error} = \frac{\mbox{Absolute Error}}{|\mbox{True value}|}$$

²Some authors will define absolute error without use of absolute value bars so that absolute error need not be nonnegative.

Euler's Method: Error

We can ask, how does the error depend on the step size?

$$\frac{dy}{dx} = xy, \quad y(0) = 1$$

I programed Euler's method into Matlab and used different h values to approximate y(1), and recorded the results shown in the table.

h	$y(1)-y_n$	$\frac{y(1)-y_n}{y(1)}$
0.2	0.1895	0.1149
0.1	0.1016	0.0616
0.05	0.0528	0.0320
0.025	0.0269	0.0163
0.0125	0.0136	0.0082

Euler's Method: Error

We notice from this example that cutting the step size in half, seems to cut the error and relative error in half. This suggests the following:

The absolute error in Euler's method is proportional to the step size.

There are two sources of error for Euler's method (not counting numerical errors due to machine rounding).

- The error in approximating the curve with a tangent line, and
- ▶ using the approximate value y_{n-1} to get the slope at the next step.

Euler's Method: Error

For numerical schemes of this sort, we often refer to the *order* of the scheme. If the error satisfies

Absolute Error = Ch^p

where C is some constant, then the order of the scheme is p.

Euler's method is an order 1 scheme.

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$\frac{dy}{dx} = g(x).$$

For example, solve the ODE

$$\frac{dy}{dx} = 4e^{2x} + 1.$$

$$y = \int (4e^{2x} + 1) dx = 2e^{2x} + x + C$$

$$y = 2e^{2x} + x + C$$

August 24, 2021 7/19

Separable Equations

Definition: The first order equation y' = f(x, y) is said to be **separable** if the right side has the form

$$f(x,y)=g(x)h(y).$$

That is, a separable equation is one that has the form

$$\frac{dy}{dx} = g(x)h(y).$$

dy: gw har his form where h(5)=1

Separable Equations

Determine which (if any) of the following are separable.

(a)
$$\frac{dy}{dx} = x^3y$$

Is separable $\frac{dy}{dx} = g(x)h(y)$

where $g(x) = x^3$
 $h(y) = y$.

(b)
$$\frac{dy}{dx} = 2x + y$$
 This is not separable themis
no way to write $2x + y$ as
 $g(x) h(y)$.

Solving Separable Equations

Recall that from $\frac{dy}{dx} = g(x)$, we can integrate both sides

$$\int \frac{dy}{dx} dx = \int g(x) dx.$$

$$\int dy = \int g(x) dx$$

$$\Rightarrow y = G x + C$$

We'll use this observation!

Solving Separable Equations

Let's assume that it's safe to divide by h(y) and let's set p(y) = 1/h(y). We solve (usually find an implicit solution) by **separating the** variables.

We want to is clade
$$x$$
 and y

from one another.

Divide by $h(y)$
 $\frac{1}{h(y)} \frac{dy}{dx} = g(x)$

O multiply by dx
 $\frac{1}{h(y)} \frac{dy}{dx} dx = g(x)dx$

O call $\frac{1}{h}$, $\frac{1}{h}$ and use $\frac{1}{h}$ dx $dx = dy$

August 24, 2021 11/19

イロト イボト イヨト イヨト 一臣 一

(9) Integrate

Spyrdy = Sgxidx.

Solve the ODE

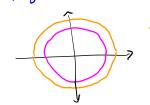
$$\frac{dy}{dx} = -\frac{x}{y} = -x \left(\frac{1}{5}\right)$$

$$\frac{1}{1/5} \frac{dy}{dx} = -x = x = y = -x = x = x$$

$$\int y \, dy = \left[-x \, dx = \frac{y^2}{3x} + x^2\right] + x = -x = x^2 + x$$

$$\int y dy = \int -x dx \Rightarrow \frac{b^2}{2} = -\frac{x^2}{2} + C$$

$$\chi^2 + y_2^2 = K$$



An IVP³

$$\frac{dQ}{dt} = g(t)h(Q)$$

yes $g(t) = .2$
 $h(Q) = Q - 70$

 $\frac{dQ}{dt} = -2(Q-70), \quad Q(0) = 180$

we solve the ODE first, then apply the IC.

$$\frac{1}{Q-70} \frac{1Q}{dt} = -2$$

$$\frac{1}{Q-70} \frac{1Q}{dt} dt = -2dt$$

$$\int \frac{1}{Q-70} dQ = \int -2dt$$

lu Q - 70 = -2+ + C

⁴ D > 4 A > 4 B > 4 B > B ³Recall IVP stands for *initial value problem*.

Let's some for a explicitly, then use the 10-701 = e e Q-70= ke => |Q= ke+70] 180 = ke +70 = k+70 Apply Q10= 190 K = 190-70 = 110 to the IVP is given explicitly Q(+) = 110 e + 70

August 24, 2021 15/19

Caveat regarding division by h(y).

The IVP
$$\frac{dy}{dx} = x\sqrt{y}$$
, $y(0) = 0$

has two solutions

$$y(x) = \frac{x^4}{16}$$
 and $y(x) = 0$.

If we separate the variables

$$\frac{1}{\sqrt{y}}\,dy=x\,dx$$

we lose the second solution.

Why?

16/19