August 25 Math 2306 sec. 52 Spring 2023

Section 3: Separation of Variables

Definition:

The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

Remark: Note that the right side is a product with one factor depending only on the independent variables, and one factor depending only on the dependenet variable.

Solving Separable Equations

We found solutions of $\frac{d y}{d x}=g(x) h(y)$ by separating the variables.
Letting $p(y)=\frac{1}{h(y)}$, we divide ${ }^{1}$ by $h(y)$ and multiply by $d x$.

$$
\frac{1}{h(y)} \frac{d y}{d x}=g(x) \Longrightarrow p(y) \underbrace{\frac{d y}{d x} d x}_{d y}=g(x) d x .
$$

Then integrate, $\int p(y) d y=\int g(x) d x$, to get a 1-parameter family of implicit solutions.

$$
P(y)=G(x)+c
$$

Here, P and G are any antiderivatives of p and g, respectively.
${ }^{1}$ We'll circle back to this move.

Find all solutions of the ODE
$\frac{d y}{d x}=-\frac{x}{y}=-x\left(\frac{1}{y}\right) \quad$ It is separable, well separate the variables

$$
\begin{aligned}
& y \frac{d y}{d x}=-x \Rightarrow y \underbrace{\frac{d y}{d x} d x=-x d x}_{d y} \\
& \int y d y=\int-x d x \Rightarrow \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+C \xrightarrow[c^{3}]{e^{2}}
\end{aligned}
$$

Let's rewrite this. Multiply by 2 and let $k=2 C$

$$
y^{2}=-x^{2}+k \quad \Rightarrow \quad x^{2}+y^{2}=k
$$

These are concenti.c circles centred © $(0,0)$.
we set two families of explicit solution

$$
y=\sqrt{x-x^{2}} \quad \text { or } \quad y=-\sqrt{k-x^{2}}
$$

Example
Let's find an explicit solution to the initial value problem $\frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0$.

The $O D E$ is separable. il $h(y)=\sqrt{y}, \quad g(x)=x$

$$
\begin{aligned}
& \frac{1}{\sqrt{y}} \frac{d y}{d x}=x \quad \frac{1}{\sqrt{y}} \frac{d y}{d x} d x=x d x \\
& \int y^{-1 / 2} d y=\int x d x \Rightarrow \frac{y^{1 / 2}}{\frac{1}{2}}=\frac{x^{2}}{2}+C
\end{aligned}
$$

Let's isolate y

$$
y^{1 / 2}=\frac{1}{4} x^{2}+\frac{1}{2} c \quad \text { Let } k=\frac{1}{2} c
$$

$$
\begin{aligned}
& y^{1 / 2}=\frac{x^{2}}{4}+k \\
& \Rightarrow \quad y=\left(\frac{x^{2}}{4}+k\right)^{2} \quad \text { explie it solvio to so } \\
& \Rightarrow \quad \text { the }
\end{aligned}
$$

we apply the IC, $y(0)=0{ }_{y}$

$$
\begin{aligned}
& y(0)=\left(\frac{0^{2}}{4}+k\right)^{2}=0 \Rightarrow k^{2}=0 \Rightarrow k=0 \\
& \text { so } \quad y=\left(\frac{x^{2}}{4}+0\right)^{2}=\left(\frac{x^{2}}{4}\right)^{2}=\frac{x^{4}}{16}
\end{aligned}
$$

The solution to the IVP is

$$
y=\frac{x^{4}}{16}
$$

$d y$ $\frac{d y}{d x}=g(x) h(y) \quad$ Caveat regarding division by $h(y)$.

Separation of variables on the ODE $y^{\prime}=x \sqrt{y}$ leads to the family of solutions $y=\left(\frac{x^{2}}{4}+\frac{C}{2}\right)^{2}$.
The IVP $\frac{d y}{d x}=x \sqrt{y}, y(0)=0$ has two distinct solutions

$$
\text { (1) } y=\frac{x^{y}}{16}, \quad \text { and } \quad \text { (2) } y=0 \text {. }
$$

(1) is a member of the family, but (2) is not! That is, the solution (2) can't be found by separation of variables!
Can you identify why we lost the second solution? we by dived \sqrt{y}

$$
\text { This requires } y \neq 0 \text { ! }
$$

Missed Solutions $\frac{d y}{d x}=g(x) h(y)$.

We can state the following theorem about possible missed, constant solutions to separable ODEs.

Theorem:

If the number c is a zero of the function h, i.e. $h(c)=0$, then the constant function $y(x)=c$ is a solution to the differential equation $\frac{d y}{d x}=g(x) h(y)$.

Remark: Such a constant solution may or may not be recovered by separation of variables. We can always look for such solutions in addition to separation of variables by looking for solutions to the equation $h(y)=0$.

Solutions Defined by Integrals

Recall the Fundamental Theorem of Calculus: Suppose g and $\frac{d y}{d x}$ are continuous on some interval $\left[x_{0}, b\right)$ containing x, then

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x), \quad \text { and } \quad \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right) .
$$

Theorem: If g is continuous on some interval containing x_{0}, then the function

$$
y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

is a solution of the initial value problem

$$
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0}
$$

Solutions Defined by Integrals
Show that

$$
y=y_{0}+\int_{x_{0}}^{x} g(t) d t \quad \text { solves } \quad \frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0} .
$$

we have to show that y solves both the ODE and the initial condition.
I.C. is $y\left(x_{0}\right)=y_{0}$?

$$
y\left(x_{0}\right)=y_{0}+\int_{x_{0}}^{x_{0}} g(t) d t=y_{0}+0=y_{0}
$$

yes, $y\left(x_{0}\right)=y_{0}$

ODE is $\frac{d y}{d x}=g(x)$?

$$
\begin{aligned}
& \frac{d}{d x} y= \frac{d}{d x}\left(y_{0}+\int_{x_{0}}^{x} g(t) d t\right)=\frac{d}{d x} y_{0}+\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t \\
&= 0+\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \\
& \text { yes, } \frac{d y}{d x}=g(x)
\end{aligned}
$$

y is a solution to the NP
Generalizing
If p and g are sufficiently continuous then

$$
\int_{y_{0}}^{y} p(z) d z=\int_{x_{0}}^{x} g(t) d t \quad \text { solves } \quad \frac{d y}{d x}=\frac{g(x)}{p(y)}, \quad y\left(x_{0}\right)=y_{0}
$$

