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1.1.6 Magnitude, Dot Product, and Orthogonality

We saw that nonzero vectors x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩ in R2 are parallel if
there exists a scalar c such that y⃗ = cx⃗ .

The Dot Product

Given the pair of vectors x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩ in R2, the dot
product of x⃗ and y⃗ , denoted x⃗ · y⃗ , is given by

x⃗ · y⃗ = x1y1 + x2y2.

We saw that two nonzero vectors x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩ in R2 are
perpendicular if there dot product is zero.
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Orthogonality

We should observe that for any vector x⃗ = ⟨x1, x2⟩ in R2, the dot
product

x⃗ · 0⃗2 = 0.

But the zero vector doesn’t define an angle with x⃗ . We have a
generalization of the notion of perpendicularity.

Orthogonality

We say that two vectors x⃗ and y⃗ in R2 are orthogonal if

x⃗ · y⃗ = 0.

Nonzero vectors are perpendicular if they are orthogonal.
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Example

Let x⃗ = ⟨4,−1⟩. Characterize all vectors in R2 that are orthogonal to x⃗ .
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Properties of the Dot Product
The dot product is sometimes called a scalar product because it acts on two
vectors to produce a scalar. It is an example of something called an inner
product because it satisfies the following algebraic properties:

For every x⃗ , y⃗ and z⃗ in R2 and scalar c in R

▶ x⃗ · y⃗ = y⃗ · x⃗ (commutative property)

▶ (cx⃗) · y⃗ = x⃗ · (cy⃗) = c(x⃗ · y⃗) (scalars factor)

▶ x⃗ · (y⃗ + z⃗) = x⃗ · y⃗ + x⃗ · z⃗ (distributive property)

▶ x⃗ · x⃗ ≥ 0 with x⃗ · x⃗ = 0 if and only if x⃗ = 0⃗2.

It is easy to show that x⃗ · x⃗ = ∥x⃗∥2. (The proofs of these statements are
homework.)
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Section 1.1.7 Direction

Direction Vector

Let x⃗ = ⟨x1, x2⟩ be a nonzero vector. The direction vector of x⃗
is the unit vector

x⃗U =
1

∥x⃗∥
x⃗ .

Show that x⃗U is a unit vector.
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Figure: A nonzero vector makes angles θ1 and θ2 relative to the horizontal and vertical,
respectively. Note, 0 ≤ θi ≤ 180◦.

The numbers
x1

∥x⃗∥
and

x2

∥x⃗∥

are called the direction cosines of the vector x⃗ , and the angles

θ1 = cos−1
(

x1

∥x⃗∥

)
and θ2 = cos−1

(
x2

∥x⃗∥

)

are the direction angles of the vector x⃗ .
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Magnitude × Direction

Let x⃗ = ⟨x1, x2⟩ ≠ 0⃗2. The direction cosines of x⃗ are

cos θ1 =
x1

∥x⃗∥
and cos θ2 =

x2

∥x⃗∥
.

Hence the direction vector of x⃗ is

x⃗U =
1

∥x⃗∥
x⃗ =

1
∥x⃗∥

⟨x1, x2⟩ =
〈

x1

∥x⃗∥
,

x2

∥x⃗∥

〉
= ⟨cos θ1, cos θ2⟩.

Then note that

x⃗ = ⟨x1, x2⟩ = ∥x⃗∥
〈

x1

∥x⃗∥
,

x2

∥x⃗∥

〉
= ∥x⃗∥⟨cos θ1, cos θ2⟩ = ∥x⃗∥x⃗U .

That is,

x⃗ = (magnitude of x⃗) times (direction vector of x⃗)
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Example

Find the direction cosines and direction angles of x⃗ = ⟨−5,7⟩.
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Figure: x⃗ = ⟨−5, 7⟩ =
√

74⟨cos(125.5◦), cos(35.5◦)⟩
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Section 1.1.8 Distance Between Vectors

Distance Between Vectors in R2

If x⃗ and y⃗ are vectors in R2, we will denote the distance between the
vectors dist(y⃗ , x⃗). This distance,

dist(y⃗ , x⃗) = ∥y⃗ − x⃗∥.

Note that this gives us the familiar distance formula between the pair of points
(x1, x2) and (y1, y2),

Distance =
√
(x1 − y1)2 + (x2 − y2)2,

seen in an elementary algebra setting.
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Distance

Figure: The distance between two vectors x⃗ and y⃗ is the magnitude of their difference. This is
the same as the distance between the terminal points of their standard representations.
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