August 25 Math 3260 sec. 53 Fall 2025

1.1.6 Magnitude, Dot Product, and Orthogonality

We saw that nonzero vectors $\vec{x} = \langle x_1, x_2 \rangle$ and $\vec{y} = \langle y_1, y_2 \rangle$ in R^2 are **parallel** if there exists a scalar c such that $\vec{y} = c\vec{x}$.

The Dot Product

Given the pair of vectors $\vec{x} = \langle x_1, x_2 \rangle$ and $\vec{y} = \langle y_1, y_2 \rangle$ in R^2 , the **dot product** of \vec{x} and \vec{y} , denoted $\vec{x} \cdot \vec{y}$, is given by

$$\vec{x}\cdot\vec{y}=x_1y_1+x_2y_2.$$

We saw that two nonzero vectors $\vec{x} = \langle x_1, x_2 \rangle$ and $\vec{y} = \langle y_1, y_2 \rangle$ in R^2 are **perpendicular** if there dot product is zero.

Orthogonality

We should observe that for any vector $\vec{x} = \langle x_1, x_2 \rangle$ in \mathbb{R}^2 , the dot product

$$\vec{x}\cdot\vec{0}_2=0.$$

But the zero vector doesn't define an angle with \vec{x} . We have a generalization of the notion of perpendicularity.

Orthogonality

We say that two vectors \vec{x} and \vec{y} in R^2 are **orthogonal** if

$$\vec{x} \cdot \vec{y} = 0.$$

Nonzero vectors are perpendicular if they are orthogonal.

Example

Let $\vec{x} = \langle 4, -1 \rangle$. Characterize all vectors in \mathbb{R}^2 that are orthogonal to \vec{x} .

If
$$\ddot{y} = \langle y_1, y_2 \rangle$$
 is orthogonal to \vec{x} , then $\vec{x} \cdot \ddot{y} = 0$. $\vec{x} \cdot \ddot{y} + \langle -1 \rangle y_2 \cdot \ddot{y}$ is orthogonal to $\vec{x} \cdot \ddot{y} = 0$. $\vec{x} \cdot \ddot{y} + \langle -1 \rangle y_2 \cdot \ddot{y}$ is orthogonal to $\vec{x} \cdot \ddot{y} = 0$. $\vec{y} \cdot \ddot{y} = 1 + y_2 \cdot y_3 \cdot \ddot{y} = 1 + y_3 \cdot \ddot{y} = 1 + y_4 \cdot \ddot{y} = 1 + y_5 \cdot \ddot{y} = 1 + y_5$

All vedor in R2 that are orthogonal

to X= (4,-1) are del linear combination of (4,1).

Properties of the Dot Product

The dot product is sometimes called a **scalar product** because it acts on two vectors to produce a scalar. It is an example of something called an **inner product** because it satisfies the following algebraic properties:

For every \vec{x} , \vec{y} and \vec{z} in R^2 and scalar c in R

- $ightharpoonup ec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$ (commutative property)
- $ightharpoonup (c\vec{x}) \cdot \vec{y} = \vec{x} \cdot (c\vec{y}) = c(\vec{x} \cdot \vec{y})$ (scalars factor)
- $\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$ (distributive property)
- $\vec{x} \cdot \vec{x} \ge 0$ with $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}_2$.

It is easy to show that $\vec{x} \cdot \vec{x} = \|\vec{x}\|^2$. (The proofs of these statements are homework.)

Section 1.1.7 Direction

Direction Vector

Let $\vec{x} = \langle x_1, x_2 \rangle$ be a nonzero vector. The **direction vector** of \vec{x} is the unit vector

$$\vec{x}_U = \frac{1}{\|\vec{x}\|} \vec{x}.$$

Show that \vec{x}_U is a unit vector.

Recall for vector
$$\vec{x}$$
 and scalar \vec{c} , $\|\vec{c}\vec{x}\| = \|\vec{c}\| \|\vec{x}\|$

$$\|\vec{x}_{u}\| = \|\frac{1}{\|\vec{x}\|} \vec{x}\| = \left|\frac{1}{\|\vec{x}\|} \right| \|\vec{x}\| \quad \text{but } \|\vec{x}\| > 0.$$

$$= \frac{1}{\|\vec{x}\|} \|\vec{x}\| = 1$$

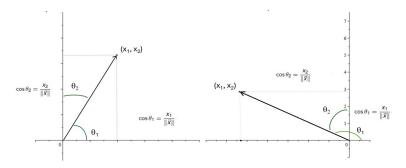


Figure: A nonzero vector makes angles θ_1 and θ_2 relative to the horizontal and vertical, respectively. Note, $0 \le \theta_i \le 180^{\circ}$.

The numbers

$$\frac{x_1}{\|\vec{x}\|}$$
 and $\frac{x_2}{\|\vec{x}\|}$

are called the **direction cosines** of the vector \vec{x} , and the angles

$$\theta_1 = \cos^{-1}\left(\frac{x_1}{\|\vec{x}\|}\right)$$
 and $\theta_2 = \cos^{-1}\left(\frac{x_2}{\|\vec{x}\|}\right)$

are the **direction angles** of the vector \vec{x} .

Magnitude × Direction

Let $\vec{x} = \langle x_1, x_2 \rangle \neq \vec{0}_2$. The direction cosines of \vec{x} are

$$\cos \theta_1 = \frac{x_1}{\|\vec{x}\|}$$
 and $\cos \theta_2 = \frac{x_2}{\|\vec{x}\|}$.

Hence the direction vector of \vec{x} is

$$\vec{x}_U = \frac{1}{\|\vec{x}\|}\vec{x} = \frac{1}{\|\vec{x}\|}\langle x_1, x_2 \rangle = \left\langle \frac{x_1}{\|\vec{x}\|}, \frac{x_2}{\|\vec{x}\|} \right\rangle = \langle \cos \theta_1, \cos \theta_2 \rangle.$$

Then note that

$$\vec{x} = \langle x_1, x_2 \rangle = \|\vec{x}\| \left\langle \frac{x_1}{\|\vec{x}\|}, \frac{x_2}{\|\vec{x}\|} \right\rangle = \|\vec{x}\| \langle \cos \theta_1, \cos \theta_2 \rangle = \|\vec{x}\| \vec{x}_U.$$

That is,

$$\vec{x} = (\text{magnitude of } \vec{x}) \text{ times (direction vector of } \vec{x})$$

Example

Find the direction cosines and direction angles of $\vec{x} = \langle -5, 7 \rangle$.

$$\chi_1 = -5$$
, $\chi_2 = 7$, $\|\vec{\chi}\| = \sqrt{(5)^2 + 7^2} = \sqrt{74}$

The direction cosines are
$$\cos \theta_1 = \frac{-5}{\sqrt{74}} \quad \text{ad} \quad \cos \theta_2 = \frac{7}{\sqrt{74}}$$

The direction asles are
$$\theta_1 = \cos^2\left(\frac{-5}{\sqrt{74}}\right) \approx 125.5^\circ$$

$$\theta_2 = \cos^2\left(\frac{7}{\sqrt{74}}\right) \approx 35.5^\circ$$

August 22, 2025

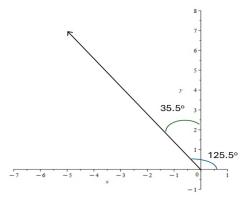


Figure: $\vec{x} = \langle -5, 7 \rangle = \sqrt{74} \langle \cos(125.5^{\circ}), \cos(35.5^{\circ}) \rangle$

Section 1.1.8 Distance Between Vectors

Distance Between Vectors in R^2

If \vec{x} and \vec{y} are vectors in R^2 , we will denote the distance between the vectors $\text{dist}(\vec{y}, \vec{x})$. This distance,

$$\mathsf{dist}(\vec{y},\vec{x}) = \|\vec{y} - \vec{x}\|.$$

Note that this gives us the familiar distance formula between the pair of points (x_1, x_2) and (y_1, y_2) ,

Distance =
$$\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
,

seen in an elementary algebra setting.

Distance

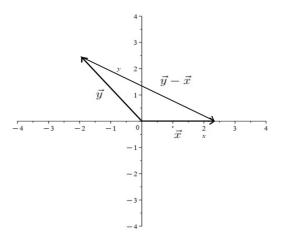


Figure: The distance between two vectors \vec{x} and \vec{y} is the magnitude of their difference. This is the same as the distance between the terminal points of their standard representations.