August 26 Math 2306 sec. 51 Fall 2024

Section 3: Separation of Variables

Recall that a first order equation of the form

Y gonty) (1)

is called separable.

» If h(c) =0, the y = cis a constant solution to (1).
» The equation (1) may be solved by separation of variables,

ay
W _/g(x)dx



Example

Solve the initial value problem t2(;,); =sec(x), x(1)=0.
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Solutions Expressed as Integrals

Theorem: If g is continuous on some interval containing xg, then
the function

X
y=y0+/ g(t) ot
Xo

is a solution of the initial value problem % = g(x), y(xo) = Yo

Generalizing

If p and g are sufficiently continuous then

Yo ax  p(y)

yp(z) dz = /X g(t)dt solves d = 9(x) y(X0) = Yo




Example: Express the solution of the IVP in terms of an integral.

Zﬁ — sin(xz), y(\/7?) -1 Y=% +/XO g(t) at




Section 4: First Order Equations: Linear
Recall that a first order linear equation has the form

21002 1 a(x)y = g(x)

If g(x) = 0 the equation is called homogeneous. Otherwise it is called
nonhomogeneous.

Provided a;(x) # 0 on the interval / of definition of a solution, we

can write the standard form of the equation Qe (x)
Px)= a.ix)
dy _ (x)

aJrP(x)y_ f(x). Loy - Ce=

We'll be interested in equations (and intervals /) for which P and f are
continuous on /.



The Solutions of % + P(x)y = f(x)

The solution to a first order linear ODE always has the same basic
structure

y(X) = yo(x) + yp(x) where

> is called the complementary solution. The complementary
solution solves associated homogeneous equation,

dy

—+P =0,an

o + P(x)y =0, and

> is called the particular solution. The particular solution
depends heavily on f and is zero if f(x) = 0.

With higher order equations, we’ll have to find y. and y, separately, but for first order
equations we have a process for finding the whole solution.



Motivating Example

Find the solutions of ngi + 2xy = €~.
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Derivation of Solution via Integrating Factor

Solve the equation in standard form

ay B
g FPXY =10
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Integrating Factor

Integrating Factor

For the first order, linear ODE in standard form

dy B
o+ POy = f(x),

the integrating factor
p(x) = exp (/ P(x) dx) .

Let’s list the steps involved in solving a first order linear ODE.




Solution Process 15! Order Linear ODE

> Put the equation in standard form y’ + P(x)y = f(x), and
correctly identify the function P(x).

> Obtain the integrating factor 1.(x) = exp ([ P(x) dx).

> Multiply both sides of the equation (in standard form) by the
integrating factor u. The left hand side will always collapse into
the derivative of a product

d
0Oy = OO ().
> Integrate both sides, and solve for y.

Y0 = [ ure0 o

_ effP(x)dx (/efP(x)de(X) dx —+ C)




