## August 27 Math 2306 sec. 54 Fall 2021

## Section 3: Separation of Variables

Recall that a first order ODE is called separable if it has the form

$$
\frac{d y}{d x}=g(x) h(y) .
$$

Such an equation is solved by separating the variables.

$$
\int \frac{d y}{h(y)}=\int g(x) d x
$$

We can also look for possible constant solutions to the separable ODE by trying to solve the equation

$$
h(y)=0 .
$$

## Caveat regarding division by $h(y)$.

The IVP $\quad \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0$
has two solutions

$$
y(x)=\frac{x^{4}}{16} \quad \text { and } \quad y(x)=0 .
$$

The solution $y=x^{4} / 16$ can be obtained by separation of variables. The constant solution $y(x)=0$ cannot!

Let's take a moment to try to solve the ODE part of this problem and see if it becomes clear why the constant function $y=0$ isn't obtained.

Example
In Class Exercise: Take a few minutes and solve the ODE

$$
\frac{d y}{d x}=x \sqrt{y}
$$

by separating the variables.
If you finish early, try applying the condition $y(0)=0$.

$$
\begin{aligned}
& \int y^{-1 / 2} d y=\int x d x \\
& \partial \sqrt{y}=\frac{x^{2}}{2}+C
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{y} & =\frac{x^{2}}{4}+\frac{c}{2} \\
\underset{\text { solv to }}{\exp } \rightarrow y & =\left(\frac{x^{2}}{4}+k\right)^{2} \quad k=\frac{c}{2}
\end{aligned}
$$ obe

If $y(0)=0$ we set $0=\left(\frac{0^{2}}{4}+k\right)=k^{2} \Rightarrow$ $k=0$

$$
y=\left(\frac{x^{2}}{4}\right)=\frac{x^{4}}{16}
$$

## Solutions Defined by Integrals

The Fundamental Theorem of Calculus tells us that: If $g$ and $\frac{d y}{d x}$ are continuous on an interval $\left[x_{0}, b\right)$ and $x$ is in this interval, then

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \text { and } \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right) .
$$

Theorem: If $g$ is continuous on some interval containing $x_{0}$, then the function

$$
y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

is a solution of the initial value problem

$$
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0}
$$

Example
Express the solution of the IVP in terms of an integral.

$$
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1 \quad y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

we ll identify the parks.

$$
g(x)=\sin \left(x^{2}\right), \quad x_{0}=\sqrt{\pi}, \quad y_{0}=1
$$

so

$$
y=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
$$

we can verity that this solves $\frac{d y}{d x}=\sin \left(x^{2}\right), y(f)=1$

Cons.de the IC:

$$
y(\sqrt{\pi})=1+\int_{\sqrt{\pi}}^{\sqrt{\pi}} \sin \left(t^{2}\right) d t=1+0=1
$$

Consider the ODE:

$$
\begin{aligned}
\frac{d}{d x} y & =\frac{d}{d x}\left(1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t\right) \\
& =\frac{d}{d x} 1+\frac{d}{d x} \int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t \\
& =0+\sin \left(x^{2}\right) \\
\frac{d y}{d x} & =\sin \left(x^{2}\right)
\end{aligned}
$$

So $y$ solves the IVP.

## Section 4: First Order Equations: Linear

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval / of definition of a solution, we can write the standard form of the equation

$$
P=\frac{a_{0}}{a_{1}}
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f=\frac{9}{a_{1}}
$$

We'll be interested in equations (and intervals $I$ ) for which $P$ and $f$ are continuous on I.

## Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- $y_{c}$ is called the complementary solution and would solve the equation

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- $y_{p}$ is called the particular solution, and is heavily influenced by the function $f(x)$.
The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example
$x^{2} \frac{d y}{d x}+2 x y=e^{x} \quad$ This is not in standard form, but well heave it as is.

The left side is the derisative of the product $x^{2} y$.

$$
\text { Note } \frac{d}{d x}\left[x^{2} y\right]=x^{2} \frac{d y}{d x}+2 x y
$$

So our OD $E$ is

$$
\frac{d}{d x}\left[x^{2} y\right]=e^{x}
$$

The god is to find $b$. We integrate

$$
\begin{gathered}
\int \frac{d}{d x}\left[x^{2} y\right] d x=\int e^{x} d x \\
x^{2} y=e^{x}+C
\end{gathered}
$$

Then $y=\frac{e^{x}+c}{x^{2}}$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

We'll multiply by a function $\mu(x)$ so that the left hand side becomes the derivative of a product,

$$
\frac{d}{d x}[\mu y] . \quad I^{\prime} \| \text { also assume } \mu(x)>0 \text {. }
$$

Multiply the OOE by $\mu$

$$
\mu \frac{d y}{d x}+\mu P(x) y=\mu f(x)
$$

we want tho left to be

$$
\frac{d}{d x}[\mu y]=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y
$$

This requires

$$
\mu \frac{d y}{d x}+\frac{d \mu}{d x} y=\mu \frac{d y}{d x}+\mu P(x) y
$$

we need

$$
\frac{d \mu}{d x} y=\mu P(x) y
$$

we get a separable ODE for $\mu$

$$
\frac{d \mu}{d x}=\mu P(x)
$$

Solve

$$
\begin{aligned}
& \int \frac{1}{\mu} d \mu=\int P(x) d x \\
& \ln \mu=\int p(x) d x
\end{aligned}
$$

$\mu$ is called an integrating factor.

## General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor $\mu$. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x) .
$$

- Integrate both sides, and solve for $y$.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

