August 27 Math 3260 sec. 53 Fall 2025

1.2 The Vector Space R³

Vectors in R³

A **vector** in R^3 is an ordered triple of real numbers,

$$\vec{x} = \langle x_1, x_2, x_3 \rangle,$$

that describe a length, called a *magnitude*, and a direction. The real numbers, x_1 , x_2 , and x_3 are called the **entries** or **components** of the vector.

When working in R^3 , we will consider the set of scalars R.

Standard Representation

As in R^2 , we can consider the **standard representation** of a vector in R^3 as a directed line segment. If $\vec{x} = \langle x_1, x_2, x_3 \rangle$, then the standard representation would start at the origin (0,0,0) and end at the point (x_1,x_2,x_3) .

Figure: The standard representation of the vector $\langle 4, 5, 6 \rangle$ is the directed line segment from the point (0,0,0) to the point (4,5,6) in the Cartesian coordinate system.

Vector Addition & Scalar Multiplication

Let $\vec{x}=\langle x_1,x_2,x_3\rangle$ and $\vec{y}=\langle y_1,y_2,y_3\rangle$ be vectors in R^3 and let c be a scalar. Then

$$ec x+ec y=\langle x_1+y_1,x_2+y_2,x_3+y_3
angle,$$
 and $cec x=\langle cx_1,cx_2,cx_3
angle.$

The zero vector $\vec{0}_3=\langle 0,0,0\rangle$ is the additive identity in the sense that for any vector \vec{x} in R^3

$$\vec{x} + \vec{0}_3 = \vec{0}_3 + \vec{x} = \vec{x}.$$

The additive inverse of the vector \vec{x} is the vector $-\vec{x} = \langle -x_1, -x_2, -x_3 \rangle$, and

$$\vec{x} + (-\vec{x}) = -\vec{x} + \vec{x} = \vec{0}_3.$$

Remark: When we use these operations on vectors in \mathbb{R}^3 , we refer to the results as **linear combinations**.

Let $\vec{u} = \langle 1, 0, 1 \rangle$ and $\vec{v} = \langle 0, 2, 1 \rangle$. Show that $\vec{x} = \langle 2, -6, -1 \rangle$ is a linear combination of \vec{u} and \vec{v} and identify the weights.

$$\vec{\chi}$$
 is a linear combination of \vec{u} and \vec{v} if $\vec{\chi} = C_1\vec{u} + C_2\vec{v}$ for some scalars C_1 , C_2 , C_3 , C_4 , C_5 , C_7 ,

Thes requires

Hence \vec{x} is a limiter combination of \vec{u} and \vec{v} . Specifically, $\vec{x} = 2\vec{u} - 3\vec{v}$.

•

1.2.1 Magnitude, Dot Product, & Orthogonality

Magnitude

The **magnitude** or **length** of the vector $\vec{x} = \langle x_1, x_2, x_3 \rangle$ in R^3 is denoted and defined by

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

We call a vector \vec{u} in R^3 such that $||\vec{u}|| = 1$ a **unit vector**.

Figure: The magnitude of a vector in \mathbb{R}^3 is based on the Pythagorean theorem, just like it is in \mathbb{R}^2 .

We can use two iterations of the Pythagorean theorem to get

$$\|\vec{x}\|^2 = \left(\sqrt{x_1^2 + x_2^2}\right)^2 + x_3^2 = x_1^2 + x_2^2 + x_3^2$$

Dot Product & Orthogonality

The Dot Product

Let $\vec{x} = \langle x_1, x_2, x_3 \rangle$ and $\vec{y} = \langle y_1, y_2, y_3 \rangle$ be vectors in \mathbb{R}^3 . The dot product of these vectors is defined by

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Note, as in R^2 , the dot product of two vectors is scalar valued.

Orthogonal

The vectors \vec{x} and \vec{y} in R^3 are **orthogonal** if

$$\vec{x} \cdot \vec{y} = 0.$$

Let $\vec{x} = \langle 1, -1, 2 \rangle$. Characterize all vectors $\vec{y} = \langle y_1, y_2, y_3 \rangle$ in R^3 that are orthogonal to \vec{x} .

Write the solutions as a linear combination of one or more vectors.

$$\vec{y}$$
 is orthogonal to \vec{x} if $\vec{x} \cdot \vec{y} = 0$.
 $\vec{x} \cdot \vec{y} = 1y_1 + (-1)y_2 + 2y_3 = y_1 - y_2 + 2y_3$
For \vec{y} orthogonal to \vec{x}
 $y_1 - y_2 + 2y_3 = 0$. This is true if $y_1 - y_2 - 2y_3$ for any scalars y_2 and y_3 .
Such vectors \vec{y} have the form

August 25, 2025

$$\vec{y} = \langle y_2 - 2y_3, y_2, y_3 \rangle$$

$$= \langle y_2, y_2, 0 \rangle + \langle -2y_3, 0, y_3 \rangle$$

$$= y_2 \langle 1, 1, 0 \rangle + y_3 \langle -2, 0, 1 \rangle$$

The set of all vectors orthogonal to $\vec{x} = (1, -1, 2)$ is all linear combinations of (1, 1, 0) and (-2, 0, 1).

The Geometry of Orthogonality

As in R^2 , the pair of vectors \vec{x} and \vec{y} in R^3 satisfy

$$\|\vec{x} + \vec{y}\| = \|\vec{x} - \vec{y}\|$$

if and only if $\vec{x} \cdot \vec{y} = 0$. Orthogonal, nonzero vectors are perpendicular in some plane that is determined by the pair.

(The above claim is left as an exercise!)

1.2.2 Direction

Direction Vector

Let $\vec{x} = \langle x_1, x_2, x_3 \rangle$ be a nonzero vector in R^3 . The **direction** vector of \vec{x} is the unit vector

$$\vec{x}_U = \frac{1}{\|\vec{x}\|} \vec{x}. = \left\langle \frac{x_1}{\|\vec{x}\|}, \frac{x_2}{\|\vec{x}\|}, \frac{x_3}{\|\vec{x}\|} \right\rangle$$

Note that this is defined in the same way as the direction vector in R^2 .

The zero vector $\vec{0}_3$ is the only vector that doesn't have a direction.

Direction

We will define the direction cosines in terms of the angles that the standard representation of a nonzero vector makes with respect to the positive x_1 , x_2 , and x_3 -axes. So a nonzero vector in R^3 will have three direction cosines.

Figure: The standard representation of a vector makes angles with each of the three positive coordinate axes.

Direction Cosines

If $\vec{x} = \langle x_1, x_2, x_3 \rangle$ is a nonzero vector, then the **direction cosines** are

$$\cos heta_1 = rac{x_1}{||ec{x}||}, \quad \cos heta_2 = rac{x_2}{||ec{x}||}, \quad ext{and} \quad \cos heta_3 = rac{x_3}{||ec{x}||}.$$

The direction angles are

$$\theta_1 = \cos^{-1}\left(\frac{x_1}{\|\vec{x}\|}\right), \quad \theta_2 = \cos^{-1}\left(\frac{x_2}{\|\vec{x}\|}\right), \quad \text{and} \quad \theta_3 = \cos^{-1}\left(\frac{x_3}{\|\vec{x}\|}\right).$$

As we saw in R^2 , in R^3

$$\vec{x}_U = \langle \cos \theta_1, \cos \theta_2, \cos \theta_3 \rangle$$
, and $\vec{x} = ||\vec{x}||\vec{x}_U$.

Distance

If \vec{x} and \vec{y} are any two vectors in R^3 , then the distance bewteen \vec{x} and \vec{y} is

$$\operatorname{dist}(\vec{x}, \vec{v}) = \|\vec{x} - \vec{v}\|.$$

1.3 The Vector Space R^n

We define objects called **vectors** in \mathbb{R}^n . A vector is an ordered n-tuple

$$\vec{x} = \langle x_1, x_2, \dots, x_n \rangle.$$

The real numbers, x_1, x_2, \dots, x_n are called the **entries** or **components** of \vec{x} .

When working in \mathbb{R}^n , we will work with **scalars**. For us, scalars will be real numbers, elements of \mathbb{R} .

Vector Addition & Scalar Multiplication

Let $\vec{x} = \langle x_1, x_2, \dots, x_n \rangle$ and $\vec{y} = \langle y_1, y_2, \dots, y_n \rangle$ be vectors in \mathbb{R}^n and let c be a scalar. Then

$$\vec{x} + \vec{y} = \langle x_1 + y_1, x_2 + y_2, \dots, x_n + y_n \rangle$$
, and

$$c\vec{x} = \langle cx_1, cx_2, \ldots, cx_n \rangle.$$

The zero vector $\vec{0}_n = \underbrace{\langle 0, 0, \dots, 0 \rangle}_{n \text{ zeros}}$ is the additive identity in the sense that for

any vector \vec{x} in R^n

$$\vec{x} + \vec{0}_n = \vec{0}_n + \vec{x} = \vec{x}.$$

The additive inverse of the vector \vec{x} is the vector $-\vec{x} = \langle -x_1, -x_2, \dots, -x_n \rangle$, and

$$\vec{x} + (-\vec{x}) = -\vec{x} + \vec{x} = \vec{0}_n.$$

Remark: When we form vectors using these operations, we refer to the result as a **linear combination**.

Magnitude

Given a vector $\vec{x} = \langle x_1, x_2, \dots, x_n \rangle$ in \mathbb{R}^n , the **magnitude** of x is the nonnegative number

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

A vector \vec{u} such that $||\vec{u}|| = 1$ is called a **unit vector**.

Dot Product & Orthogonality

The **dot product** of the pair of vectors $\vec{x} = \langle x_1, x_2, \dots, x_n \rangle$ and $\vec{y} = \langle y_1, y_2, \dots, y_n \rangle$ in R^n is the scalar

$$\vec{X} \cdot \vec{V} = X_1 V_1 + X_2 V_2 + \cdots + X_n V_n.$$

We say that two vectors \vec{x} and \vec{y} in R^n are **orthogonal** if

$$\vec{x} \cdot \vec{y} = 0.$$

Let
$$\vec{x} = \langle 1, 0, 2, -3, 4 \rangle$$
, $\vec{y} = \langle 1, 1, -1, 4, 5 \rangle$, and $\vec{z} = \langle 2, 1, 3, 0, p \rangle$.

1. If \vec{x} , \vec{y} and \vec{z} are in R^n , what is n?

2. Determine $\|\vec{x}\|$.

$$\|\vec{x}\|^2 = 1^2 + 0^2 + 2^2 + (-3)^2 + 4^2 = 1 + 4 + 9 + 16 = 30$$

$$\|\vec{x}\| = \sqrt{30}$$

Let
$$\vec{x} = \langle 1, 0, 2, -3, 4 \rangle$$
, $\vec{y} = \langle 1, 1, -1, 4, 5 \rangle$, and $\vec{z} = \langle 2, 1, 3, 0, p \rangle$.

3. Evaluate $\vec{x} \cdot \vec{y}$.

$$\sqrt{1 + 1} = 1 = 1 = 12 + 120 = 17$$

4. For what value(s) of p, if any, are \vec{x} and \vec{z} orthogonal?

$$\vec{X} \cdot \vec{z} = 1(z) + O(1) + z(3) + (-3)(0) + 4p$$

= $2 + 6 + 4p = 8 + 4p$.
 $\vec{X} = \vec{z} = con \text{ or Hosonal if } \vec{X} \cdot \vec{p} = 0$.
 $8 + 4p = 0 \implies p = -2$.

August 25, 2025

1.3.1 Algebraic Properties of the Dot Product

The dot product is sometimes called a **scalar product** because it acts on two vectors to produce a scalar. It is an example of something called an **inner product** because it satisfies the following algebraic properties:

For every \vec{x} , \vec{y} and \vec{z} in R^n and scalar c in R

- $ightharpoonup ec{x} \cdot ec{y} = ec{y} \cdot ec{x}$ (commutative property)
- $(c\vec{x}) \cdot \vec{y} = \vec{x} \cdot (c\vec{y}) = c(\vec{x} \cdot \vec{y}) \text{ (scalars factor)}$
- $\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$ (distributive property)
- $\vec{x} \cdot \vec{x} \ge 0$ with $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}_n$.

134.34

This looks like a previous slide, but there's one small difference. Before, we considered vectors in \mathbb{R}^2 , and now we're considering vectors in \mathbb{R}^n . But the properties are the same!