August 28 Math 2306 sec. 51 Fall 2024

Section 4: First Order Equations: Linear
Recall that a first order linear equation is one that has the form’

(0% 1 a(x)y = g(x).

In standard form, a first order linear equation looks like

dy B
ax + P(x)y = f(x).

We’'ll assume that P and f are continuous on the domain of the solution. The
solution will have the basic structure

Y(X) = Ye(X) + Yp(X)

where y, is called the complementary solution and y, is called the
particular solution.

'It's called homogeneous if g(x) = 0 and nonhomogeneous otherwise.



Solution Process 15! Order Linear ODE

> Put the equation in standard form y’ + P(x)y = f(x), and
correctly identify the function P(x).

> Obtain the integrating factor 1.(x) = exp ([ P(x) dx).

> Multiply both sides of the equation (in standard form) by the
integrating factor u. The left hand side will always collapse into
the derivative of a product

d
0Oy = OO ().
> Integrate both sides, and solve for y.

Y0 = [ ure0 o

_ effP(x)dx (/efP(x)de(X) dx —+ C)




Example
Solve the initial value problem
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Verify

Just for giggles, lets verify that our solution y = 2x? + 3x really does
solve the differential equation we started with
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Why don’t we need the “+C” in ?
Why was it OK to take

o= e—ln(X) — x1

instead of p = e "X)+C = gCx—17

Look at what happens to the factor &C.

1 d
Coy-1(_ 1 C,—1 Cy—1 c
e”x <y Xy) =e"x '(2x) = o (e X y) =2e”.

The constant can be factored out of the derivative and cancelled on
both sides!

eci( (X‘1y) =2¢¢ = f{g{ <X‘1y> = 2¢¢

. .o d
Again, we end up with o (x1y)=2.

When computing the integrating factor, p, I'll always take the
added constant to be zero.




Steady and Transient States

Figure: The charge g(t) on the capacitor in the given curcuit satisfies a first
order linear equation.

2‘2 +200g =60, g(0)=0.

Solve this IVP for the charge g(t) on the capacitor for t > 0.
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Steady and Transient States

Note that the solution, the charge, consists of a complementary and a
particular solution, g = qp + qe.
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qe(t) = —75€ 1008 and  gp(t) = 0
Evaluate the limit
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Steady and Transient States

The complementary solution contains the information given by the
initial condition, and for some physical systems like this the
complementary solution decays.

Definition: Such a decaying complementary solution is called a
transient state.

Note that due to this decay, after a while g(t) ~ qp(1).

Definition: Such a corresponding particular solution is called a
steady state.




