August 28 Math 2306 sec. 51 Fall 2024

Section 4: First Order Equations: Linear

Recall that a first order linear equation is one that has the form¹

$$a_1(x)\frac{dy}{dx}+a_0(x)y=g(x).$$

In standard form, a first order linear equation looks like

$$\frac{dy}{dx}+P(x)y=f(x).$$

We'll assume that *P* and *f* are continuous on the domain of the solution. The solution will have the basic structure

$$y(x) = y_c(x) + y_p(x)$$

where y_c is called the **complementary** solution and y_p is called the **particular** solution.

¹It's called homogeneous if g(x) = 0 and nonhomogeneous otherwise.

Solution Process 1st Order Linear ODE

- Put the equation in standard form y' + P(x)y = f(x), and correctly identify the function P(x).
- Obtain the integrating factor $\mu(x) = \exp\left(\int P(x) dx\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor µ. The left hand side will always collapse into the derivative of a product

$$\frac{d}{dx}[\mu(x)y] = \mu(x)f(x).$$

Integrate both sides, and solve for y.

$$y(x) = \frac{1}{\mu(x)} \int \mu(x) f(x) \, dx$$
$$y(x) = e^{-\int P(x) \, dx} \left(\int e^{\int P(x) \, dx} f(x) \, dx + C \right)$$

Example

Solve the initial value problem

$$x \frac{dy}{dx} - y = 2x^{2}, x > 0 \quad y(1) = 5$$
Put the DE in Standard form
$$\frac{dy}{dx} - \frac{1}{x} \quad y = 2x \quad , \quad P(x) = -\frac{1}{x}$$
The integrating factor $\mu = e^{\int P(x) dx} = e^{\int -\frac{1}{x} dx}$

$$\mu = e^{\int \frac{1}{x} dx} = -\ln x \quad = e^{\ln x^{2}} = x^{2}$$

$$\mu = x^{2}$$
Much by μ

 $x'' \left(\frac{dy}{dx} - \frac{1}{x}y\right) = x''(zx)$ $\frac{d}{dx}\left(x'y\right) = Z$ $\int \frac{d}{dx} \left(x' y \right) dx = \int z dx$ x'y = 2x+C $y = \frac{2x+C}{x^{-1}} = x(zx+C)$ $y = 2x^2 + Cx$ This is a 1-parameter family of solutions CDF. to the

Apply the initial condition,
$$y(1) = 5$$
.
 $y(1) = 2(1^2) + C(1) = 5$
 $z+C = 5 \Rightarrow C = 3$
The solution to the IVP is
 $y = 2x^2 + 3x$

Verify

Just for giggles, lets verify that our solution $y = 2x^2 + 3x$ really does solve the differential equation we started with

Why don't we need the "+C" in μ ? Why was it OK to take

 $\mu = e^{-\ln(x)} = x^{-1}$ instead of $\mu = e^{-\ln(x)+C} = e^{C}x^{-1}$?

Look at what happens to the factor e^{C} .

$$e^{C}x^{-1}\left(y'-\frac{1}{x}y\right)=e^{C}x^{-1}(2x) \implies \frac{d}{dx}\left(e^{C}x^{-1}y\right)=2e^{C}.$$

The constant can be factored out of the derivative and cancelled on both sides!

$$e^{C}\frac{d}{dx}\left(x^{-1}y\right) = 2e^{C} \implies \mathscr{P}\left(\frac{d}{dx}\left(x^{-1}y\right)\right) = 2\mathscr{P}\left(\frac{d}{dx}\right)$$

Again, we end up with $\frac{d}{dx}(x^{-1}y) = 2$.

When computing the integrating factor, μ , I'll always take the added constant to be zero.

Steady and Transient States

Figure: The charge q(t) on the capacitor in the given curcuit satisfies a first order linear equation.

$$2\frac{dq}{dt}+200q=60, \quad q(0)=0.$$

Solve this IVP for the charge q(t) on the capacitor for t > 0.

Standard form
$$\frac{dq}{dt} + 100q = 30$$

$$2\frac{dq}{dt} + 200q = 60, \quad q(0) = 0$$

$$\mathcal{P}(t) = 100, \quad \mu = e^{\int P(t) dt} = e^{\int 100 dt} = e^{100 t}$$

$$e^{100t} \left(\frac{dq}{dt} + 100\eta\right) = e^{100t} (30) = 30 e^{100t}$$

$$\frac{d}{dt} \left(e^{100t} q\right) = 30 e^{100t}$$

$$\int \frac{d}{dt} \left(e^{100t} q\right) dt = \int 30 e^{100t} dt$$

$$e^{100t} q = \frac{30}{100} e^{100t} + k.$$

$$g = \frac{\frac{3}{10} e^{00t} + k_{1}}{\frac{100t}{e}} = \frac{3}{10} \frac{e^{00t}}{e^{100t}} + \frac{k_{1}}{e^{100t}}$$

The solutions to the ODE are

$$q = \frac{3}{10} + k e^{-100t}$$

April 2 (0)= 0

$$q(0) = \frac{3}{10} + ke^{0} = 0$$

 $\frac{3}{10} + k = 0 \Rightarrow k = \frac{-3}{10}$
The charge on the conductor is $q = \frac{3}{10} - \frac{3}{10}e^{-100t}$

Steady and Transient States

Note that the solution, the charge, consists of a complementary and a particular solution, $q = q_p + q_c$.

$$q(t) = \frac{3}{10} - \frac{3}{10}e^{-100t}$$
$$q_c(t) = -\frac{3}{10}e^{-100t} \text{ and } q_p(t) = \frac{3}{10}$$
mit

.

$$\lim_{t\to\infty}q_c(t) = \oint_{t\to\infty} -\frac{3}{10} e^{-100t} = O$$

Steady and Transient States

The complementary solution contains the information given by the initial condition, and for some physical systems like this the complementary solution decays.

Definition: Such a decaying complementary solution is called a **transient state**.

Note that due to this decay, after a while $q(t) \approx q_p(t)$.

Definition: Such a corresponding particular solution is called a **steady state**.