August 28 Math 2306 sec. 52 Spring 2023

Section 3: Separation of Variables

Separable Differential Equations

Recall that a first order equation of the form

$$
\begin{equation*}
\frac{d y}{d x}=g(x) h(y) \tag{1}
\end{equation*}
$$

is called separable.

- If $h(c)=0$, the $y=c$ is a constant solution to (1).
- The equation (1) may be solved by separation of variables,

$$
\int \frac{d y}{h(y)}=\int g(x) d x
$$

Solutions Expressed as Integrals

Theorem: If g is continuous on some interval containing x_{0}, then the function

$$
y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

is a solution of the initial value problem $\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0}$.

Generalizing

If p and g are sufficiently continuous then

$$
\int_{y_{0}}^{y} p(z) d z=\int_{x_{0}}^{x} g(t) d t \quad \text { solves } \quad \frac{d y}{d x}=\frac{g(x)}{p(y)}, \quad y\left(x_{0}\right)=y_{0}
$$

Example: Express the solution of the IVP in terms of an integral.

$$
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1
$$

Let's identify the prices.

$$
\begin{gathered}
g(x)=\sin \left(x^{2}\right), \quad x_{0}=\sqrt{\pi}, \quad y_{0}=1 \\
y=y_{0}+\int_{x_{0}}^{x} g(t) d t
\end{gathered}
$$

The solution to the $V P \rho$ is

$$
y=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
$$

Section 4: First Order Equations: Linear

Recall that a first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Standard Form

Provided $a_{1}(x) \neq 0$ on the interval $/$ of definition of a solution, we can write the standard form of the equation

$$
P(x)=\frac{a_{0}(x)}{a_{1}(x)}
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f(y)=\frac{\delta(x)}{a_{1}(x)}
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on l.

The Solutions of $\frac{d y}{d x}+P(x) y=f(x)$

The solution to a first order linear ODE always has the same basic structure

$$
y(x)=y_{c}(x)+y_{p}(x) \quad \text { where }
$$

- y_{c} is called the complementary solution. The complementary solution solves associated homogeneous equation, $\frac{d y}{d x}+P(x) y=0$, and
- y_{p} is called the particular solution. The particular solution depends heavily on f and is zero if $f(x)=0$.

With higher order equations, we'll have to find y_{c} and y_{p} separately, but for first order equations we have a process for finding the whole solution.

Motivating Example
Find the solutions of $x^{2} \frac{d y}{d x}+2 x y=e^{x}$.
This is not in stander form, but we ll work with it as is. The lect side is the desisatue of a product, it is $\frac{d}{d x}\left(x^{2} y\right)$.

$$
\frac{d}{d x}\left(x^{2} y\right)=x^{2} \frac{d y}{d x}+2 x y
$$

so the ODE is

$$
\frac{d}{d x}\left(x^{2} y\right)=e^{x}
$$

The goal is to find y.

Integrate both sides

$$
\begin{aligned}
& \int \frac{d}{d x}\left(x^{2} y\right) d x=\int e^{x} d x \\
& x^{2} y=e^{x}+C
\end{aligned}
$$

Assuming $x \neq 0$

$$
\begin{gathered}
y=\frac{c}{x^{2}}+\frac{e^{x}}{x^{2}} \\
y_{c}=\frac{c}{x^{2}} \text { and } y_{p}=\frac{e^{x}}{x^{2}}
\end{gathered}
$$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

well manipulate the equation to make the reft side coll apse as a product rule. We multiply the equation by a function $\mu(x)$ so that the left side becomes $\frac{d}{d x}(\mu y)$. Assume μ exists and $\mu(x)>0$.

$$
\begin{aligned}
& \mu\left(\frac{d y}{d x}+P(x) y\right)=\mu f(x) \\
& \mu \frac{d y}{d x}+P(x) \mu y=\mu f(x)
\end{aligned}
$$

$$
\frac{d}{d x}(\mu y)=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y
$$

we need $\quad \mu \frac{d y}{d x}+\frac{d \mu}{d x} y=\mu \frac{d y}{d x}+P(x) \mu y$
This requines the purple terms to motch.

$$
\begin{aligned}
& \frac{d \mu}{d x} y=P(x) \mu y \quad \text { carcel } s \\
& \frac{d y}{d x}=P(x) \mu \quad \text { seferther for }
\end{aligned}
$$

Solen for μ

$$
\frac{1}{\mu} \frac{d \mu}{d x}=P(x)
$$

$$
\begin{aligned}
& \int \frac{1}{\mu} d \mu=\int P(x) d x \\
& \ln \mu=\int P(x) d x \\
& \mu=e^{\int p(x) d x}
\end{aligned}
$$

Integrating Factor

Integrating Factor

For the first order, linear ODE in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

the integrating factor

$$
\mu(x)=\exp \left(\int P(x) d x\right)
$$

Let's list the steps involved in solving a first order linear ODE.

