August 28 Math 2306 sec. 53 Fall 2024

Section 4: First Order Equations: Linear

Recall that a first order linear equation is one that has the form¹

$$a_1(x)\frac{dy}{dx}+a_0(x)y=g(x).$$

In standard form, a first order linear equation looks like

$$\frac{dy}{dx} + P(x)y = f(x).$$

We'll assume that P and f are continuous on the domain of the solution. The solution will have the basic structure

$$y(x) = y_c(x) + y_p(x)$$

where y_c is called the **complementary** solution and y_p is called the **particular** solution.

¹It's called homogeneous if g(x) = 0 and nonhomogeneous otherwise.

Solution Process 1st Order Linear ODE

- Put the equation in standard form y' + P(x)y = f(x), and correctly identify the function P(x).
- ▶ Obtain the integrating factor $\mu(x) = \exp(\int P(x) dx)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ . The left hand side **will always** collapse into the derivative of a product

$$\frac{d}{dx}[\mu(x)y] = \mu(x)f(x).$$

Integrate both sides, and solve for y.

$$y(x) = \frac{1}{\mu(x)} \int \mu(x) f(x) \, dx$$

$$=e^{-\int P(x)\,dx}\left(\int e^{\int P(x)\,dx}f(x)\,dx+C\right)$$

Example

Solve the initial value problem

$$x\frac{dy}{dx} - y = 2x^{2}, x > 0 \quad y(1) = 5$$
Divide by $x \leftarrow y$ for set standard form
$$\frac{dy}{dx} - \frac{1}{x}y = \frac{1}{x}x \quad P(x) = \frac{-1}{x}$$

$$\mu = e^{\int r(x)dx} = e^{\int \frac{1}{x}dx} = -\int \frac{1}{x}dx = -\int \frac{1}{x}d$$

$$\frac{d}{dx}(x', y) = 2$$

Integrale with respect to
$$x$$

$$\int \frac{d}{dx} (x'y) dx = \int z dx$$

$$y = \frac{2x + C}{x^{-1}} = x (2x + C)$$

Apply
$$y(1) = 5$$

 $y'(1) = Z(1^2) + C(1) = 5$
 $Z + C = 5 \implies C = 3$
The solution to the IVP is
 $y = Zx^2 + 3x$.

Verify

Just for giggles, lets verify that our solution $y = 2x^2 + 3x$ really does solve the differential equation we started with

$$x\frac{dy}{dx}-y=2x^2.$$

$$y = 2x^{2} + 3x$$
, $y' = 4x + 3$
 $\times y' - y = 2x^{2}$
 $\times (4x + 3) - (2x^{2} + 3x) = 2x^{2}$
 $4x^{2} + 3x - 2x^{2} - 3x = 2x^{2}$
 $4x^{2} - 2x^{2} = 2x^{2}$
 $4x^{2} - 2x^{2} = 2x^{2}$

Swows Work

Swows Work

Solves

Why don't we need the "+C" in μ ?

Why was it OK to take

$$\mu = e^{-\ln(x)} = x^{-1}$$
 instead of $\mu = e^{-\ln(x)+C} = e^{C}x^{-1}$?

Look at what happens to the factor e^{C} .

$$e^C x^{-1} \left(y' - \frac{1}{x} y \right) = e^C x^{-1} (2x) \implies \frac{d}{dx} \left(e^C x^{-1} y \right) = 2e^C.$$

The constant can be factored out of the derivative and cancelled on both sides!

$$e^{C} \frac{d}{dx} (x^{-1}y) = 2e^{C} \implies \mathscr{E} \frac{d}{dx} (x^{-1}y) = 2\mathscr{E}$$

Again, we end up with $\frac{d}{dx}(x^{-1}y) = 2$.

When computing the integrating factor, μ , I'll always take the added constant to be zero.

Steady and Transient States

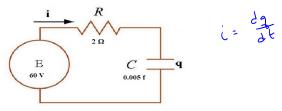


Figure: The charge q(t) on the capacitor in the given curcuit satisfies a first order linear equation.

$$2\frac{dq}{dt} + 200q = 60, \quad q(0) = 0.$$

Solve this IVP for the charge q(t) on the capacitor for t > 0.

$$2\frac{dq}{dt} + 200q = 60, \quad q(0) = 0$$

$$\mu = e \qquad = e \qquad = e$$

$$e^{100t} \left(\frac{dq}{dt} + 100q \right) = e^{100t} \left(\frac{dq}{dt} + 30e^{100t} \right)$$

$$e^{100t} \left(\frac{dq}{dt} + 100q\right) = e^{100t} (30)$$

$$\frac{d}{dt} \left(e^{100t}q\right) = 30e$$

$$\int \frac{d}{dt} \left(e^{100t}q\right) dt = \int 30e^{100t} dt$$

$$e^{100t}q = \frac{30}{100}e^{100t} + K$$

$$q = \frac{\frac{3}{10}e^{100t} + k}{e^{100t}} = \frac{3}{10}\frac{e^{100t}}{e^{100t}} + \frac{k}{e^{100t}}$$

$$q = \frac{3}{100} + k e^{-100t}$$

a one parameter family of solutions to

the
$$60\bar{e}$$
, $Apply 9(0)=0$
 $9(0)=\frac{3}{10}+ke^0=0$
 $\frac{3}{10}+h=0 \Rightarrow k=\frac{-3}{10}$

The charge on the copacitor is $q = \frac{3}{10} - \frac{3}{10} = \frac{3}{10}$

Steady and Transient States

Note that the solution, the charge, consists of a complementary and a particular solution, $q=q_p+q_c$.

$$q(t) = \frac{3}{10} - \frac{3}{10}e^{-100t}$$

$$q_c(t) = -\frac{3}{10}e^{-100t}$$
 and $q_p(t) = \frac{3}{10}$

Evaluate the limit

$$\lim_{t \to \infty} q_c(t) = \lim_{t \to \infty} \frac{-3}{10} e^{-100t} = 0$$

$$q(t) \approx q_c(t)$$

.

Steady and Transient States

The complementary solution contains the information given by the initial condition, and for some physical systems like this the complementary solution decays.

Definition: Such a decaying complementary solution is called a **transient state**.

Note that due to this decay, after a while $q(t) \approx q_p(t)$.

Definition: Such a corresponding particular solution is called a **steady state**.