August 29 Math 2306 sec. 51 Fall 2022

Section 4: First Order Equations: Linear

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval I of definition of a solution, we can write the standard form of the equation

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

$$
\begin{aligned}
& P(x)=\frac{a_{0}(x)}{a_{1}(x)} \\
& f(x)=\frac{g(x)}{a_{1}(x) .}
\end{aligned}
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the equation

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.
The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example

$$
x^{2} \frac{d y}{d x}+2 x y=e^{x}
$$

This is not in standend form, but well make an exception. The left side is the derivative of the product, $x^{2} y$.

$$
\frac{d}{d x}\left(x^{2} y\right)=x^{2} \frac{d y}{d x}+2 x y
$$

The ODE is

$$
\frac{d}{d x}\left(x^{2} y\right)=e^{x}
$$

The goal is to get y.

Integrate

$$
\begin{gathered}
\int \frac{d}{d x}\left(x^{2} y\right) d x=\int e^{x} d x \\
x^{2} y=e^{x}+C
\end{gathered}
$$

Divide by x^{2}

$$
y=\frac{e^{x}}{x^{2}}+\frac{c}{x^{2}}
$$

This is the general solution
Here, $y_{c}=\frac{c}{x^{2}}$ and $y_{p}=\frac{e^{x}}{x^{2}}$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

we wart the left side to collapse as one derivative. Weill multiply the ode by a function $\mu(x)$, and choose μ so that the left side becomes $\frac{d}{d x}(\mu(x) y)$.
we ass ume $\mu(x)$ exists and that $\mu(x)>0$.
The ODE is

$$
\mu \frac{d y}{d x}+P(x) \mu y=\mu f(x)
$$

Note $\frac{d}{d x}(\mu y)=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y$
set the lefteside of the ODE to this

$$
\mu \frac{d y}{d x}+\frac{d \mu}{d x} y=\mu \frac{d y}{d x}+P(x) \mu y
$$

we need

$$
\frac{d \mu}{d x} y=p(x) \mu y
$$

Cancel the y

$$
\frac{d \mu}{d x}=P(x) \mu
$$

This is $1^{\text {st }}$ order separable.

$$
\begin{gathered}
\frac{1}{\mu} \frac{d \mu}{d x}=P(x) \\
\int \frac{1}{\mu} d \mu=\int P(x) d x \\
\ln \mu=\cdot \int p(x) d x \\
\mu=e^{\int P(x) d x}
\end{gathered}
$$

This is called an integrating factor

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x) .
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

Solve the IVP

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

$$
x \frac{d y}{d x}-y=2 x^{2}, x>0 \quad y(1)=5
$$

Put it in standard form (divide by x)

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{1}{x} y=\frac{2 x^{2}}{x}=2 x \\
& P(x)=\frac{-1}{x}, \mu=e^{\int P(x) d x} \\
& \int P(x) d x=\int \frac{-1}{x} d x=-\ln x \\
& \mu=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
\end{aligned}
$$

Mutipls by μ :

$$
\begin{gathered}
x^{-1}\left(\frac{d y}{d x}-\frac{1}{x} y\right)=x^{-1}(2 x) \\
\frac{d}{d x}\left(x^{-1} y\right)=2 \\
\int \frac{d}{d x}\left(x^{-1} y\right) d x=\int 2 d x \\
x^{-1} y=2 x+C \\
y=\frac{2 x+C}{x^{-1}}=2 x^{2}+C x
\end{gathered}
$$

$y=2 x^{2}+C x$ is a 1 -parameter family of solutions to the ODE.

Now apply $y(1)=5$.

$$
\begin{gathered}
y(1)=2(1)^{2}+c(1)=5 \\
2+c=5 \Rightarrow c=3
\end{gathered}
$$

The solution to the IV P is

$$
y=2 x^{2}+3 x
$$

Verify
Just for giggles, lets verify that our solution $y=2 x^{2}+3 x$ really does solve the differential equation we started with

$$
\begin{aligned}
& x \frac{d y}{d x}-y=2 x^{2} . \\
& y=2 x^{2}+3 x, \quad y^{\prime}=4 x+3 \\
& x \frac{d y}{d x}-y \stackrel{?}{=} 2 x^{2} \\
& x(4 x+3)-\left(2 x^{2}+3 x\right) \stackrel{?}{=} 2 x^{2} \\
& 4 x^{2}+3 x-2 x^{2}-3 x \stackrel{?}{=} 2 x^{2} \\
& 2 x^{2}=2 x^{2}
\end{aligned}
$$

