August 30 Math 2306 sec. 51 Fall 2021

Section 4: First Order Equations: Linear

Recall that we were interested in first order linear equations. Such an equation in standard form looks like

$$
\frac{d y}{d x}+P(x) y=f(x) .
$$

We're assuming that P and f are continuous on the domain of definition. The solution, that we'll call the general solution will have the form

$$
y=y_{c}+y_{p}
$$

where y_{c} is called the complementary solution and y_{p} is called the particular solution. If $f(x)=0$, we call the ODE homogeneous ${ }^{1}$. Otherwise, we call it nonhomogeneous.
${ }^{1} y_{p}=0$ if the ODE is homogeneous.

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

Solve the IVP

$$
x \frac{d y}{d x}-y=2 x^{2}, x>0 \quad y(1)=5
$$

Divide by x to get standard for m.

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{1}{x} y=\frac{2 x^{2}}{x}=2 x \\
& \frac{d y}{d x}+p(x) y \quad P(x)=\frac{-1}{x}
\end{aligned}
$$

The integrating factor $\mu=e^{\int P(x) d x}$

$$
\left.\begin{array}{rl}
\int p(x) d x & =\int \frac{-1}{x} d x
\end{array}\right)=-\ln x \quad e^{\int \rho(x) d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
$$

August 27, $2021 \quad 3 / 20$

Mull. the ODE by μ

$$
\begin{gathered}
-1\left(\frac{d y}{d x}-\frac{1}{x} y\right)=x^{-1}(2 x) \\
\frac{d}{d x}\left[x^{-1} y\right]=2 \\
\int \frac{d}{d x}\left[x^{-1} y\right] d x=\int 2 d x \\
x^{-1} y=2 x+C
\end{gathered}
$$

hence $y=\frac{2 x+C}{x^{-1}}=x(2 x+C)$
The solution to the ODE is

$$
\begin{aligned}
& y=2 x^{2}+C x \\
& y_{p}
\end{aligned}
$$

Apply the I.C. $y(1)=5$

$$
\begin{gathered}
y(1)=2(1)^{2}+c(1)=5 \\
2+c=5 \Rightarrow c=3
\end{gathered}
$$

The solution to the IVP

$$
y=2 x^{2}+3 x
$$

Verify
Just for giggles, lets verify that our solution $y=2 x^{2}+3 x$ really does solve the differential equation we started with

$$
\begin{aligned}
& x \frac{d y}{d x}-y=2 x^{2} \\
& y=2 x^{2}+3 x, \quad y^{\prime}=4 x+3 \\
& ? \frac{?}{d x}-y \quad 2 x^{2} \\
& x(4 x+3)-\left(2 x^{2}+3 x\right) \stackrel{?}{=} 2 x^{2} \\
& ? \\
& 4 x^{2}+3 x-2 x^{2}-3 x=2 x^{2} \\
& 2 x^{2}=2 x^{2}
\end{aligned}
$$

Steady and Transient States

Figure: The charge $q(t)$ on the capacitor in the given curcuit satisfies a first order linear equation.

$$
2 \frac{d q}{d t}+200 q=60, \quad q(0)=0
$$

Standard
form

$$
\frac{d q}{d t}+100 q=30
$$

$$
P(t)=100
$$

$$
\begin{aligned}
& \mu=e^{\int P(t) d t}=e^{\int 100 d t}=e^{100 t} \\
& e^{100 t}\left(\frac{d q}{d t}+100 q\right)=e^{\cdots t}(30) \\
& \frac{d}{d t}\left[e^{100 t} q\right]=30 e^{100 t} \\
& \int e^{a t} d t \\
& =\frac{1}{a} e^{a t}+C \\
& \int \frac{d}{d t}\left[e^{100 t} q\right] d t=\int 30 e^{100 t} d t \\
& e^{100 t} q=\frac{30}{100} e^{100 t}+k \\
& q=\frac{\frac{3}{10} e^{100 t}+k}{e^{100 t}}=\frac{3}{10}+k e^{-100 t}
\end{aligned}
$$

Use $q(\theta)=0$

$$
\begin{array}{r}
q(0)=\frac{3}{10}+k e^{0}=0 \\
k=\frac{-3}{10}
\end{array}
$$

The charge on the capacitor

$$
q(t)=\frac{3}{10}-\frac{3}{10} e^{-100 t}
$$

Steady and Transient States

Note that the solution, the charge, consists of a complementary and a particular solution, $q=q_{p}+q_{c}$.

$$
\begin{gathered}
q(t)=\frac{3}{10}-\frac{3}{10} e^{-100 t} \\
q_{c}(t)=-\frac{3}{10} e^{-100 t} \quad \text { and } \quad q_{p}(t)=\frac{3}{10}
\end{gathered}
$$

Evaluate the limit

$$
\lim _{t \rightarrow \infty} q_{c}(t)=\lim _{t \rightarrow \infty} \frac{-3}{10} e^{-100 t}=0
$$

Steady and Transient States

The complementary solution contains the information given by the initial condition, and for some physical systems like this the complementary solution decays.

Definition: Such a decaying complementary solution is called a transient state.

Note that due to this decay, after a while $q(t) \approx q_{p}(t)$.

Definition: Such a corresponding particular solution is called a steady state.

Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

Solving the Bernoulli Equation

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

Divide by $y^{n} \quad y^{-n} \frac{d y}{d x}+P(x) y^{1-n}=f(x)$
Let $u=y^{1-n}$. Then $\frac{d u}{d x}=(1-n) y^{1-n-1} \frac{d y}{d x}$

$$
\text { so } \frac{d u}{d x}=(1-n) y^{-n} \frac{d y}{d x}
$$

Let's multi's the ODE by $1-n$.

$$
(1-n) y^{-n} \frac{d y}{d x}+(1-n) P(x) y^{1-n}=(1-n) f(x)
$$

$$
\frac{d u}{d x}+(1-n) p(x) u=(1-n) f(x)
$$

This is $1^{\text {st }}$ arden linear of the form

$$
\frac{d u}{d x}+P_{1}(x) u=f_{1}(x)
$$

where $P_{1}(x)=(1-n) P(x)$ and

$$
\begin{aligned}
& f_{1}(x)=(1-n) f(x) \\
& u=y^{1-n} \Rightarrow y=u^{\frac{1}{1-n}}
\end{aligned}
$$

Example
Solve the initial value problem $y^{\prime}-y=-e^{2 x} y^{3}$, subject to $y(0)=1$.

$$
\begin{aligned}
& y^{\prime}-y=-e^{2 x} y^{3}, \quad n=3 \\
& \text { so } u=y^{1-3}=y^{-2} \rightarrow \frac{d u}{d x}=-2 y^{-3} \frac{d y}{d x} \\
& y^{3} y^{\prime}-y^{-2}=-e^{2 x}
\end{aligned}
$$

Moet by -2

$$
\begin{aligned}
-2 y^{3} \frac{d y}{d x}+2 y^{-2} & =2 e^{2 x} \\
\frac{d u}{d x}+2 u & =2 e^{2 x} \\
P_{1}(x) & =2
\end{aligned}
$$

Int. factor: $\mu=e^{\left.\operatorname{ll}_{l}(x)\right)_{x}}=e^{\int_{2 d x}}=e^{2 x}$

$$
\begin{aligned}
& e^{2 x}\left(u^{\prime}+2 u\right)=e^{2 x}\left(2 e^{2 x}\right) \\
& \frac{d}{d x}\left[e^{2 x} u\right]=2 e^{4 x} \\
& \int \frac{d}{d x}\left[e^{2 x} u\right] d x=\int 2 e^{4 x} d x \\
& e^{2 x} u=\frac{2}{4} e^{4 x}+C \\
& u=\frac{\frac{1}{2} e^{4 x}+C}{e^{2 x}}=\frac{1}{2} e^{2 x}+C e^{-2 \cdot x}
\end{aligned}
$$

Let's go back to y so we con apply the IC.

$$
u=y^{-2} \Rightarrow y=u^{\frac{-1}{2}}=\frac{1}{\sqrt{u}}
$$

Hence $y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+C e^{-2 x}}}$
well use $y(0)=1$ to find C.

$$
\begin{aligned}
y(0)=\frac{1}{\sqrt{\frac{1}{2} e^{0}+C e^{0}}} & =1 \\
\frac{1}{\sqrt{\frac{1}{2}+C}} & =1
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{\frac{1}{2}+C} & =1 \\
\frac{1}{2}+C & =1^{2}=1 \\
C & =1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

So the soh to the IVP

$$
y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}}}
$$

