August 30 Math 2306 sec. 52 Fall 2021

Section 4: First Order Equations: Linear

Recall that we were interested in first order linear equations. Such an
equation in standard form looks like

dy

—+P = f(x).

G POy =1(x)
We’re assuming that P and f are continuous on the domain of
definition. The solution, that we’ll call the general solution will have
the form

Y=Yc+¥p
where y. is called the complementary solution and y, is called the

particular solution. If f(x) = 0, we call the ODE homogeneous'.
Otherwise, we call it nonhomogeneous.

'y, = 0 if the ODE is homogeneous.
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General Solution of First Order Linear ODE

v

Put the equation in standard form y’ + P(x)y = f(x), and correctly
identify the function P(x).

Obtain the integrating factor (x) = exp ([ P(x) dx).
Multiply both sides of the equation (in standard form) by the

integrating factor x. The left hand side will always collapse into
the derivative of a product

& 0] = (1)

Integrate both sides, and solve for y.
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Verify
Just for giggles, lets verify that our solution y = 2x? + 3x really does
solve the differential equation we started with

xZi—y:2x2.
. . \
(e \\ Cu\’bg\—\‘\'c;\-e . :j—. ZX—L+3-X- ) \g = X +3

T
x%&_ -9 = 2Zx

z 1

X (%xfﬂ — (+7x) = X

W
= IR

L{Xz.e '3/{ - ZX‘L"/—{X
7% = Ax" w6

August 27, 2021

6/20



Figure: The charge g(t) on the capacitor in the given curcuit satisfies a first
order linear equation.

2(;’/? +200g =60, g(0)=0.
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Steady and Transient States

Note that the solution, the charge, consists of a complementary and a

particular solution, g = qp + qe.
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Steady and Transient States

The complementary solution contains the information given by the

initial condition, and for some physical systems like this the
complementary solution decays.

Definition: Such a decaying complementary solution is called a
transient state.

Note that due to this decay, after a while g(t) ~ qp(1).

Definition: Such a corresponding particular solution is called a
steady state.
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Bernoulli Equations

Suppose P(x) and f(x) are continuous on some interval (a, b) and n is
a real number different from 0 or 1 (not necessarily an integer). An
equation of the form

dy

o TPy =1(y”

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since
n # 0,1 it is necessarily nonlinear. So our previous approach involving
an integrating factor does not apply directly. Fortunately, we can use a
change of variables to obtain a related linear equation.
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Solving the Bernoulli Equation

dy _ i
g TPy =1(x)y
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Example
Solve the initial value problem y’ — y = —e®*y3, subject to y(0) = 1.
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Ran out of time!
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