August 30 Math 2306 sec. 52 Spring 2023

Section 4: First Order Equations: Linear

First Order Linear ODE in Standard Form

We are considering first order ODEs of the form ${ }^{a}$

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) \tag{1}
\end{equation*}
$$

where we'll assume that P and f are continuous on the interval of interest.
${ }^{\text {a }}$ The identifying characteristic that makes this standard form is that the coefficient of the highest derivative is 1 .

The Solutions of $\frac{d y}{d x}+P(x) y=f(x)$

The solution to a first order linear ODE always has the same basic structure

$$
y(x)=y_{c}(x)+y_{p}(x) \quad \text { where }
$$

- y_{c} is called the complementary solution. The complementary solution solves associated homogeneous equation, $\frac{d y}{d x}+P(x) y=0$, and
- y_{p} is called the particular solution. The particular solution depends heavily on f and is zero if $f(x)=0$.

With higher order equations, we'll have to find y_{c} and y_{p} separately, but for first order equations we have a process for finding the whole solution.

Derivation of Solution via Integrating Factor

Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

To solve this equation, we seek a function $\mu(x)$ called an integrating factor. The idea is that multiplying the equation through by this function μ will result in the left side collapsing as the derivative of the product, $\frac{d}{d x}(\mu y)$. In other words, for the correct function μ

$$
\mu\left(\frac{d y}{d x}+P(x) y\right)=\mu f(x) \quad \Longrightarrow \quad \frac{d}{d x}(\mu y)=\mu(x) f(x)
$$

We found that the correct integrating factor is

$$
\mu=e^{\int P(x) d x} .
$$

Integrating Factor

Integrating Factor

For the first order, linear ODE in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

the integrating factor

$$
\mu(x)=\exp \left(\int P(x) d x\right)
$$

Let's finish finding the solution y to the ODE and then look at the process and examples.

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Use the integrating factor, $\mu=e^{\int P(x) d x}$, to determine the solutions to the ODE.

Multiply by μ and the equation collapses

$$
\begin{aligned}
\mu\left(\frac{d y}{d x}+P(x) y\right) & =\mu f(x) \\
\frac{d}{d x}(\mu y) & =\mu(x) f(x)
\end{aligned}
$$

Integrate

$$
\begin{aligned}
& \int \frac{d}{\partial x}(\mu y) d x=\int \mu(x) f(x) d x \\
& \mu y=\int \mu(x) f(x) d x
\end{aligned}
$$

Dividebs μ

$$
\begin{aligned}
y & =\frac{1}{\mu} \int \mu(x) f(x) d x \\
& =\frac{1}{\mu}\left(\int_{\mu(x) f(x) d x}+C\right) \\
y & =\frac{1}{\mu} \int \mu(x) f(x) d x+\underbrace{\frac{c}{\mu}}_{y_{c}}
\end{aligned}
$$

Solution Process $1^{\text {st }}$ Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
\begin{aligned}
y(x) & =\frac{1}{\mu(x)} \int \mu(x) f(x) d x \\
& =e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
\end{aligned}
$$

Example
Solve the initial value problem

$$
x \frac{d y}{d x}-y=2 x^{2}, x>0 \quad y(1)=5
$$

The ODE is $1^{\text {st }}$ order linear. In standard form it is

$$
\frac{d y}{d x}-\frac{1}{x} y=2 x \quad P(x)=\frac{-1}{x}
$$

Build $\mu=e^{\int P(x) d x}$

$$
\mu=e^{\int \frac{-1}{x} d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
$$

we could have $\mu=e^{\ln x^{-1}+c}=e^{\ln x^{-1}} \cdot e^{c}=e^{c} x^{-1}$
well take the " $+C$ " to be zero
so $\mu=x^{-1}$. Multiply the DOE by μ

$$
\begin{aligned}
x^{-1}\left(\frac{d y}{d x}-\frac{1}{x} y\right) & =x^{-1}(2 x) \\
\frac{d}{d x}\left(x^{-1} y\right) & =2
\end{aligned}
$$

Integrate

$$
\begin{aligned}
& \int \frac{d}{d x}\left(x^{-1} y\right) d x=\int 2 d x \\
& x^{-1} y=2 x+C \\
& y=\frac{2 x+C}{x^{-1}}=2 x^{2}+C x
\end{aligned}
$$

$y=2 x^{2}+C x$ is a 1-paremeter for? of solutions to the $O D E$.

Apply $y(1)=5 \quad y(1)=2(1)^{2}+c(1)=5$

$$
2+c=5 \Rightarrow c=3
$$

The solution to the IVP is

$$
y=2 x^{2}+3 x
$$

$$
x^{-1}\left(\frac{d y}{d x}-\frac{1}{x} y\right) \stackrel{?}{=} \frac{d}{d x}\left(\bar{x}^{-1} y\right) \text { is this true?? }
$$

LHS $\quad x^{-1} \frac{d y}{d x}-\bar{x}^{-1} \frac{1}{x} y=x^{-1} \frac{d y}{d x}-x^{-2} y$
RUS $\frac{d}{d x}\left(x^{-} y\right)=x^{-1} \frac{d y}{d x}+\left(-1 x^{2}\right) y=x^{-1} \frac{d y}{d x}-x^{-2} y$

Verify
Just for giggles, lets verify that our solution $y=2 x^{2}+3 x$ really does solve the differential equation we started with

$$
\begin{array}{r}
x \frac{d y}{d x}-y=2 x^{2} . \\
y=2 x^{2}+3 x, \quad y^{\prime}=4 x+3 \\
x \frac{d y}{d x}-y \stackrel{?}{=} 2 x^{2} \\
x(4 x+3)-\left(2 x^{2}+3 x\right) \stackrel{?}{=} 2 x^{2} \\
4 x^{2}+3 x-2 x^{2}-3 x \stackrel{?}{=} 2 x^{2} \\
2 x^{2}=2 x^{2}
\end{array}
$$

Steady and Transient States

Figure: The charge $q(t)$ on the capacitor in the given curcuit satisfies a first order linear equation.

$$
2 \frac{d q}{d t}+200 q=60, \quad q(0)=0
$$

Solve this IVP for the charge $q(t)$ on the capacitor for $t>0$.

$$
\begin{aligned}
& \text { The BDE is list arden linear, in standard form } \\
& \text { it is } \frac{d g}{d t}+100 q=30
\end{aligned}
$$

$$
\begin{gathered}
2 \frac{d q}{d t}+200 q=60, \quad q(0)=0 \\
P(t)=100 \quad \mu=e^{\int p(t) d t}=e^{\int 100 d t}=e^{100 t}
\end{gathered}
$$

Multiply by μ and collapse

$$
\begin{gathered}
e^{100 t}\left(q^{1}+100 q\right)=30 e^{100 t} \\
\frac{d}{d t}\left(e^{100 t} q\right)=30 e^{100 t} \\
\int \frac{d}{d t}\left(e^{100 t} q\right) d t=\int 30 e^{100 t} d t \\
e^{100 t} q=30 \frac{e^{100 t}}{100}+k
\end{gathered}
$$

$$
q=\frac{\frac{3}{10} e^{100 t}+k}{e^{100 t}}=\frac{3}{10}+k e^{-100 t}
$$

$q=\frac{3}{10}+k e^{-100 t}$ is a 1 -paoonde family of solutions to the ODE.

Apply $q(0)=0 \quad q(0)=\frac{3}{10}+k e^{-100(0)}=0$

$$
\frac{3}{10}+k=0 \Rightarrow k=\frac{-3}{10}
$$

The charge on the capacitor is

$$
q=\frac{3}{10}-\frac{3}{10} e^{-100 t}
$$

Steady and Transient States

Note that the solution, the charge, consists of a complementary and a particular solution, $q=q_{p}+q_{c}$.

$$
\begin{gathered}
q(t)=\frac{3}{10}-\frac{3}{10} e^{-100 t} \\
q_{c}(t)=-\frac{3}{10} e^{-100 t} \text { and } q_{p}(t)=\frac{3}{10}
\end{gathered}
$$

Evaluate the limit

$$
\lim _{t \rightarrow \infty} q_{c}(t)=\lim _{t \rightarrow \infty} \frac{-3}{10} e^{-100 t}=0
$$

Steady and Transient States

The complementary solution contains the information given by the initial condition, and for some physical systems like this the complementary solution decays.

Definition: Such a decaying complementary solution is called a transient state.

Note that due to this decay, after a while $q(t) \approx q_{p}(t)$.

Definition: Such a corresponding particular solution is called a steady state.

