August 31 Math 2306 sec. 51 Fall 2022

Section 4: First Order Equations: Linear

Recall that a first order linear ODE in standard form is

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

If $f(x)=0$ we call the equation homogeneous. Otherwise it's called nonhomogeneous. The general solution ${ }^{1}$ will look like

$$
y=y_{c}+y_{p}
$$

where y_{c} is called the complementary solution and y_{p} is called the particular solution.
${ }^{1}$ If the ODE is homogeneous, the particular solution will not appear-it will bezero.

Solution Process for $1^{\text {st }}$ Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and divide out μ to solve for y.

Steady and Transient States

Figure: The charge $q(t)$ on the capacitor in the given curcuit satisfies a first order linear equation.

$$
2 \frac{d q}{d t}+200 q=60, \quad q(0)=0
$$

Determine the charge $q(t)$ for $t>0$.

$$
\text { Standard form: } \frac{d q}{d t}+100 q=30
$$

$$
\begin{aligned}
& P(t)=100 \\
& \mu=e^{\int P(t) d t}=e^{\int 100 d t}=e^{100 t}
\end{aligned}
$$

Mretiply the ODE by μ

$$
\frac{d}{d t}\left[e^{100 t} q\right]=30 e^{100 t}
$$

Integrate

$$
\begin{aligned}
& \int \frac{d}{d t}\left(e^{100 t} q\right) d t=\int 30 e^{100 t} d t \\
& e^{100 t} q=30\left(\frac{1}{100}\right) e^{100 t}+k
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad q(t)=\frac{\frac{3}{10} e^{100 t}+k}{e^{100 t}} \\
& q(t)=\frac{3}{10}+k e^{-100 t} \quad \text { This is } \\
& \text { the generd } \\
& \text { solution. }
\end{aligned}
$$

Apply the IC $q(\theta)=0$

$$
q(0)=\frac{3}{10}+k e^{0}=0 \Rightarrow k=\frac{-3}{10}
$$

The charge on the capacitor is

$$
q(t)=\frac{3}{10}-\frac{3}{10} e^{-100 t}
$$

Steady and Transient States

Note that the solution, the charge, consists of a complementary and a particular solution, $q=q_{p}+q_{c}$.

$$
\begin{gathered}
q(t)=\frac{3}{10}-\frac{3}{10} e^{-100 t} \\
q_{c}(t)=-\frac{3}{10} e^{-100 t} \quad \text { and } \quad q_{p}(t)=\frac{3}{10}
\end{gathered}
$$

Evaluate the limit

$$
\lim _{t \rightarrow \infty} q_{c}(t)=\lim _{t \rightarrow \infty} \frac{-3}{10} e^{-100 t}=0
$$

Steady and Transient States

The complementary solution contains the information given by the initial condition, and for some physical systems like this the complementary solution decays.

Definition: Such a decaying complementary solution is called a transient state.

Note that due to this decay, after a while $q(t) \approx q_{p}(t)$.

Definition: Such a corresponding particular solution is called a steady state.

Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

Solving the Bernoulli Equation

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

Let $u=y^{1-n}$. u will solve a linear oDE.

$$
\begin{aligned}
& u=y^{1-n}, \frac{d u}{d x}=(1-n) y^{1-n-1} \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{1}{1-n} y^{n} \frac{d u}{d x}
\end{aligned}
$$

sub this into the $O D E$

$$
\frac{1}{1-n} y^{n} \frac{d u}{d x}+P(x) y=f(x) y^{n}
$$

Divide by y^{n}

$$
\begin{aligned}
& \frac{1}{1-n} \frac{d u}{d x}+P(x) \underbrace{\frac{y}{y^{n}}}_{y^{1-n}}=f(x) \underbrace{y^{n}}_{1} \\
&=u \\
& \frac{1}{1-n} \frac{d u}{d x}+P(x) u=f(x)
\end{aligned}
$$

In standard form

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

$$
\frac{d u}{d x}+P_{1}(x) u=f_{1}(x)
$$

where $P_{1}(x)=(1-n) P(x)$

$$
f_{1}(x)=(1-n) f(x)
$$

Since $u=y^{1-n}, \quad y=u^{\frac{1}{1-n}}$

Example
Solve the first order ODE $\frac{d y}{d x}-y=e^{-2 x} y^{3}$.

$$
y^{\prime}+p(x) y=f(x) y^{n}
$$

This is Bernoulli with

$$
\begin{aligned}
& n=3, \quad P(x)=-1, \quad f(x)=e^{-2 x} \\
& u=y^{1-n}=y^{1-3}=y^{-2}, \quad 1-n=-2
\end{aligned}
$$

u solves $\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)$

$$
\frac{d u}{d x}+(-2)(-1) u=(-2) e^{-2 x}
$$

$$
\begin{gathered}
\frac{d u}{d x}+2 u=-2 e^{-2 x} \\
P_{1}(x)=2, \quad \mu=e^{\int P_{1}(x) d x}=e^{\int 2 d x}=e^{2 x}
\end{gathered}
$$

Metiply by μ to get

$$
\begin{aligned}
\frac{d}{d x}\left(e^{2 x} u\right) & =e^{2 x}\left(-2 e^{-2 x}\right) \\
\frac{d}{d x}\left(e^{2 x} u\right) & =-2 \\
\int \frac{d}{d x}\left(e^{2 x} u\right) d x & =\int-2 d x
\end{aligned}
$$

$$
\begin{aligned}
e^{2 x} u & =-2 x+C \\
u & =\frac{-2 x+C}{e^{2 x}}=-2 x e^{-2 x}+C e^{-2 x} \\
\text { That is, } u & =C e^{-2 x}-2 x e^{-2 x}
\end{aligned}
$$

Now, so back to y.

$$
u=y^{-2} \Rightarrow y=u^{-1 / 2}=\frac{1}{\sqrt{u}}
$$

Hence $y=\frac{1}{\sqrt{c e^{-2 x}-2 x e^{-2 x}}}$.

