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6.7 L'Hopital’s Rule

While this chapter is devoted to learning techniques of integration, this section
is not about integration. Rather, it is concerned with a technique of evaluating
certain limits that will be useful in the following section, where integration is
once more discussed.

Our treatment of limits exposed us to “0/0”, an indeterminate form. If lim f(x) =

X—rC
Oand )I(m g(x) = 0, we do not conclude that lmf(x)/g(x) is 0/0; rather, we use
0/0 as notation to describe the fact that both the numerator and denominator
approach 0. The expression 0/0 has no numeric value; other work must be done
to evaluate the limit.

Other indeterminate forms exist; they are: co/o0, 000, 0o — 00, 0°, 1°° and
oc®. Just as “0/0” does not mean “divide 0 by 0,” the expression “co/o0” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 - co” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be.

This section introduces I'Hopital’s Rule, a method of resolving limits that pro-
duce the indeterminate forms 0/0 and co/co. We'll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two form so that our new rule can be applied.

Theorem 49 L'Hopital’s Rule, Part 1

Let lim f(x) = 0 and lim g(x) = 0, where fand g are differentiable func-
X—C X—C

tions on an open interval / containing ¢, and g’ (x) # 0 on / except possibly

atc. Then 0 00
. x) X
Mgl g

We demonstrate the use of I'H6pital’s Rule in the following examples; we
will often use “LHR” as an abbreviation of “I’'Hé6pital’s Rule.”

Notes:

6.7 L'Hopital’s Rule
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Example 187 Using I’'Hopital’s Rule
Evaluate the following limits, using I'Hopital’s Rule as needed.
sinx 2
1. lim — 3. lim _x
x—=0 X x—01 — cosx
2. lim —— 4. lim ——
x—1 1—x x—2 x> —3x+ 2
SOLUTION

1. We proved this limit is 1 in Example 12 using the Squeeze Theorem. Here
we use I'Hopital’s Rule to show its power.

~sinx bYWHR  cogx
lim— = |lim—=1.
x—0 X x—0 1
' /X£3—2 bR %(,H_g)*l/l 1
2. lim —m = Iim&—7=——
x—1 1—x x—1 —1 4
' X2 byLHR 2x
3. lim — = |lim —.
x—01 — cosx x—0 sin X

This latter limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply I’'Hopital’s Rule again.

im— = — =2.
x—0 sin x CcoSs X
2
. X
Thus lim —— =2
x—01 — cosx

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

2 -6 -2 3 3
i X TX=6 _ (x=2)(x+3) . ox+3

= —_ —5-
x=2x2—=3x+2 x=2(x—2)(x—1) x=o2x-1

We now show how to solve this using I’'Hopital’s Rule.

X2 x—6 WWHR 9y
im —— = | =5
x—2x2 —3x+2 x—22X — 3

The following theorem extends our initial version of I’'Hopital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form oo/oco
and to limits where x approaches +oo.

Notes:



Theorem 50 L'Hopital’s Rule, Part 2

1. Let lim f(x) = oo and lim g(x) = £o0, where fand g are differ-
X—a X—a
entiable on an open interval / containing a. Then

19 . f

x—a g(x) x—ag’(x) ’

2. Letfand g be differentiable functions on the open interval (a, co)
for some value a, where g’(x) # 0 on (a,c0) and lim f(x)/g(x)
X— 00

returns either 0/0 or co/co. Then

A similar statement can be made for limits where x approaches
—0o0.

Example 188 Using I’Hopital’s Rule with limits involving oo
Evaluate the following limits.

. 3x2—100x +2 )
1. I|m _— 2. I|m —_.
x—o0 4x2 + 5x — 1000 x—o0 X3
SOLUTION

1. We can evaluate this limit already using Theorem 11; the answer is 3/4.
We apply I'Hopital’s Rule to demonstrate its applicability.

3x2 —100x 2 byltHR gy _ 100 bYLHR 5 3
im —— = lim ——— = lim = = —.
x—o0 4x2 + 5x — 1000 x—oo 8Xx+5 x—00 8 4
ex by LHR eX by LHR eX by LHR
2. lim — = lim — = lim — = lim — = oo.
X—00 X x—00 3X x—o00 6X x—o0o0 6

Recall that this means that the limit does not exist; as x approaches oo,
the expression e"/x3 grows without bound. We can infer from this that
e* grows “faster” than x3; as x gets large, e* is far larger than x3. (This
has important implications in computing when considering efficiency of
algorithms.)

Notes:

6.7 L'Hopital’s Rule
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Indeterminate Forms O - oo and co — oo

L'Hopital’s Rule can only be applied to ratios of functions. When faced with
an indeterminate form such as 0- oo or co — 0o, we can sometimes apply algebra
to rewrite the limit so that 'H6pital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 189 Applying I’'Hopital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim x- e/ 3. lim In(x+1) —Inx
x—0t X—00
: 2
i 1/x 4. lim x* —¢&*
2. lim x-eY om
x—0—
SOLUTION

1. Asx — 0, x — 0 and e!/* — co. Thus we have the indeterminate form
1/x

e
1/x as T oW, asx — 0t, we get
X

0 - co. We rewrite the expression x - e

the indeterminate form oo /oo to which I’'Hépital’s Rule can be applied.

1/x  byLHR 2)pl/x
. . € . —1/x%)e .
lim x-e'* = lim = lim % = lim eY/* = .
x—0F x—0t 1/x x—0t  —1/x x—0F
1/x

Interpretation: e*/* grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. Asx —+0",x —~0and el/x s =% _ 0. The the limit evaluates to 0 - 0
which is not an indeterminate form. We conclude then that

lim x-e/* =o0.
x—0—

3. This limitinitially evaluates to the indeterminate form oo —oo. By applying
a logarithmic rule, we can rewrite the limit as

1
lim In(x+1) —Inx = lim In (X+ >

X—00 X—00 X

As x — 00, the argument of the In term approaches oo /o0, to which we
can apply I'Ho6pital’s Rule.
x+1 by LHR 1

lim = =1.
x—oo0 X 1

Notes:



x+1
Since x — oo implies — 1, it follows that

x+1
X — oo implies In <+> —Inl=0.
X

Thus

; . x+1

lim In(x+1) —Inx = lim In( ) =0.
X— 00 X— 00 X

Interpretation: since this limit evaluates to 0, it means that for large x,

there is essentially no difference between In(x + 1) and In x; their differ-

ence is essentially 0.

4. The limit lim x?

X—»00

— ¥ initially returns the indeterminate form oo — co. We

e~
can rewrite the expression by factoring out x%; x> — e = x? <1 — 2> .
X

We need to evaluate how e*/x? behaves as x — co:

e by LHR e by LHR
im — = Ilm — = lim — =o0.
x—00 X2 x—00 2X x—o0 2

Thus limy_, o, X2(1 — € /x?) evaluates to oo - (—oc), which is not an inde-
terminate form; rather, co - (—o0) evaluates to —oco. We conclude that

lim x* — e = —oo.
X— 00

Interpretation: as x gets large, the difference between x? and e* grows
very large.

Indeterminate Forms 0°, 1*° and oc°

When faced with an indeterminate form that involves a power, it often helps
to employ the natural logarithmic function. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 20 Evaluating Limits Involving Indeterminate Forms
0°, 1 and oc®

If lim In (f(x)) =L, then lim f(x) = lim e"/®) = e*.

X—C X—C X—C

Notes:

6.7 L'Hopital’s Rule

317



Chapter 6

318

Techniques of Antidifferentiation

Example 190 Using I’'Ho6pital’s Rule with indeterminate forms involving
exponents
Evaluate the following limits.
1 X
1. lim (1 + ) 2. lim x.
X—»00 X x—0t
SOLUTION

1. This equivalent to a special limit given in Theorem 3; these limits have
important applications within mathematics and finance. Note that the
exponent approaches oo while the base approaches 1, leading to the in-
determinate form 1°°. Let f(x) = (141/x)*; the problem asks to evaluate

f(x). Let’s first evaluate XIer;O In (f(x)).

lim
X— 00

lim In (f(x)) = lim In (1 + i)x

X— 00 X— 00

. 1
= lim xIn(1+ -
X—00 X

I 1
X—00 1/x

This produces the indeterminate form 0/0, so we apply I'Hopital’s Rule.

lim
x—00 14 1/x

=1.

Thus lim In (f(x)) = 1. We return to the original limit and apply Key Idea

X—00

20.

1 X
lim (l + x> = lim f(x) = lim e"V®) = ¢l —e¢,

X— 00 X—00 X—00

2. This limit leads to the indeterminate form 0°. Let f(x) = x* and consider

Notes:



first lim In (f(x)).

x—0t

lim In (f(x)) = lim In (x*)

x—0t x—0t

= lim xlnx
x—0t

. Inx
im —.
x—0+ 1/x

This produces the indeterminate form —oo /oo so we apply I’Hopital’s Rule.

1/x

= lim /
x—0+ 71/X2

= lim —x
x—0t

=0.

Thus Iim+ In (f(x)) = 0. We return to the original limit and apply Key Idea
x—0
20.

lim X = lim f(x) = lim e"®) = ¢0 =1,

x—0t x—0t x—0t

This result is supported by the graph of f(x) = x* given in Figure 6.17.

Our brief revisit of limits will be rewarded in the next section where we con-
sider improper integration. So far, we have only considered definite integrals
1

where the bounds are finite numbers, such as / f(x) dx. Improper integration

0
considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applications, in addition to generating ideas that are
enlightening.

Notes:

6.7 L'Hopital’s Rule

Figure 6.17: A graph of f(x) = x* support-
ing the fact that as x — 0T, f(x) — 1.
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Exercises 6.7

Terms and Concepts

1.

. Create a function f(x) such that Iimlf(x) returns
x—

List the different indeterminate forms described in this sec-
tion.

. T/F:I'Hopital’s Rule provides a faster method of computing

derivatives.
!
. T/F: I'HOpital’s Rule states that i {@] = f/(x) .
dx [gx)]  g'(x)
. Explain what the indeterminate form “1°°” means.
fx)

. Fillinthe blanks: The Quotient Rule is applied to m when

taking
certain

; 'Hopital’s Rule is applied when taking

. Create (but do not evaluate!) a limit that returns “co?”.

/rOO ”

Problems

In Exercises 8 — 52, evaluate the given limit.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

X +x—2
x—1

X +x—6

x—2 x* — 7x + 10

sin x

lim

x—1

. lim

lim
x—7 X — T

sinx — cos x
cos(2x)
lim sin(5x)
x—0 X
lim sin(2x)
x—=0 X+ 2
sin(2x

lm sin(3x)
)

x—7/4

. sin(ax

lim =

x—0 sin(bx)
e —1
lim 3

x—ot X

e —x—-1
x—0t X

lim ———
x—ot X3 — X2

lim —
X—» 00

lim
X—> 00

eX
x

eX
eX
lim —
X— 00 ﬁ
-
lim —
X

X

X— 00

lim
x—o00 3X

X —5x*+3x+9

24, Im ———————
x—3 x3 — 7x2 4+ 15x — 9
) X+ 4x* + 4x
25. lim
x——2 X3 + 7x2 4+ 16x + 12
2. lim X
x—oo X
2
27. fim N0

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

X— 00 X

. (lnx)2

X—00 X

lim x-Inx
x—0+

lim vx-Inx

x—01

. 1
lim xe'/*

x—0t
. 3 2
lim x° — x
X—» 00

lim v/x—Inx

X—00

lim xe”
X—r — 00

1 _
lim —e 1/x
x—0t+ X
lim (14 x)"/*
x—01
lim (2x)*
x—>0+( )
lim (2/x)*
x—0T
lim (sinx)”
x~>0+( )

lim (1 —x)*™"
x—>1+( )

Hint: use the Squeeze Theorem.

lim (x)*/

X—00

lim (1/x)"

X—r 00

lim (Inx)*™*
x~>1+( )

lim (1 + x)**

X—r00

lim (1 + x*)Y/*

X—00

lim tanxcosx
x—7/2

lim tanxsin(2x)
x—7/2

1 1
im — —
x—1+Inx  x—1

X

lim 3 —
x=3tx2—9 x-—3

lim xtan(1/x)
X— 00

| 3
im (X"
X—00 X

X +x—2

lim
Inx

x—1



Solutions to Odd Exercis

21. ——L1— 4+ C (Trig. Subst. is not needed)
X249
1 x+2 1 —1 (x+2
23 g 2rars T s AN (55 +c

2. 1 (7 s fsin_l(x/\@)) +C

X
27. ©/2

29. 2V2 +2In(1+ v2)

31. 9sin=(1/3) + v/8 Note: the new lower bound is

6 = sin~1(—1/3) and the new upper bound is § = sin~%(1/3).

The final answer comes with recognizing that
sin~1(—1/3) = —sin~%(1/3) and that
cos (sin~1(1/3)) = cos (sin~1(—1/3)) = V8/3.

Section 6.5

1. rational
A B
=
A B
> x—/7 + x+V7

7. 3In|x—2|+4In|x+5|+C

9. I(njx+2|—Injx—2))+C

11 — 25 —3In|x+8[+C

13. —In|2x—3|+5In|x— 1| +2In|x+ 3|+ C
15. x+Injx—1] —In|x+2|+C

17. 2x+C

—1(x+2
w.—gmhl+ﬁ+1q+x+217%ﬁl+c

21. 2In|x— 3| +2In|x® +6x+ 10| — 4tan~*(x +3) + C

23. 1 (3In|x +2x+ 17| —4In|x— 7| + tan 1 (2E1)) +C
25. 1In|x? + 10x+ 27| + 5Infx + 2| - 6v2tan ~* (2) 4 ¢
27. 5In(9/4) — 11n(17/2) ~ 3.3413

29. 1/8

Section 6.6

1. Because cosh x is always positive.

X —x\ 2 2 2
3. coth? x — csch? x = te ) — (
ex —e~ X ex —e™X

_ (¥ t24em™) - (8)
- ex _ 2 + e—2

_ er -2+ efzx

T e _2 e

=1

X —X 2
5. cosh? x = (%)

e2X +2+ efzx

f

1 (EZX + efzx) + 2

2 2

_ 1 (82X+8_2X +1)
2 2

__cosh2x+1

= 72 .

d d 2
7. — [sechx] = — | ———
dx dx [eX 4 e~

—2(e¥—e™)

_ 2(e* —e™)

T (e e ) (e +e)
2 eX —e™*

= —sechxtanhx

sinh x
9. /tanhxdx:/ dx
coshx
Let u = cosh x; du = (sinh x)dx

1

= / —du
u

=Inlul+C

= In(coshx) + C.

11. 2sinh2x
13. cothx
15. xcoshx

17. 3

Vo1

oy

21. secx

23. y=3/4(x—1In2)+5/4

25. y=x

27. 1/2In(cosh(2x)) + C

29. 1/2sinh?x + Cor1/2 cosh? x + C

31. xcosh(x) — sinh(x) + C

33, cosh™1(x2/2) + C=In(® +Vx* —4) +C

35 Ltanl(x/2) + S inlx—2[+ S in|x+2[+C

19.

37. tan~ (&) + C

39. xtanh~1x+1/2In|x* — 1| +C
41. 0

43. 2

Section 6.7

1. 0/0,00/00,0 - 00, 00 — 00,00, 1%, cc°
3. F

5. derivatives; limits
7. Answers will vary.
9. —5/3

11. —v/2/2

13. 0

15. a/b

17. 1/2

19. 0

21. ©

23. 0

25. =2

27. 0

29. 0



31. o
33. o
35.
37.
39.
41.
43.
45.

[ S N =)

47.
49. —oo
51. 0

Section 6.8

1. The interval of integration is finite, and the integrand is

continuous on that interval.
3. converges; could also state < 10.
5. p>1

7. €°/2

9. 1/3

11. 1/In2

13. diverges

15. 1

17. diverges

19. diverges

21. diverges

23. 1

25. 0

27. —1/4

29. —1

31. diverges

33. 1/2

35. converges; Limit Comparison Test with 1/x3/2.

37. converges; Direct Comparison Test with xe™*.

39. converges; Direct Comparison Test with xe %,

41. diverges; Direct Comparison Test with x/(x? + cos x).

43. converges; Limit Comparison Test with 1/e*.

Chapter 7

Section 7.1

1. T

3. Answers will vary.
5. 16/3

7.

9. 202

11. 45

13. 2 —7/2

15.
17.

19.
21.
23.
25.
27.

1/6

On regions such as [1/6, 57/6], the area is 31/3/2. On regions
such as [—/2, 7/6], the area is 3v/3/4.

5/3

9/4

1

4

219,000 ft?

Section 7.2

15.

17.

19.

21.

T

. Recall that “dx” does not just “sit there;” it is multiplied by A(x)

and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

. 1757 /3 units®
. /6 units®

. 357/3 units3
11.
13.

27/15 units3
(a) 5127/15
(b) 2567/5
(c) 8327/15
(d) 1287/3
(a) 1047/15
(b) 647/15
(c) 327/5
(a) 8w
(b) 87
() 167/3
(d) 87/3

The cross—sections of this cone are the same as the cone in
Exercise 18. Thus they have the same volume of 2507 /3 units3.

Orient the solid so that the x-axis is parallel to long side of the
base. All cross—sections are trapezoids (at the far left, the
trapezoid is a square; at the far right, the trapezoid has a top
length of 0, making it a triangle). The area of the trapezoid at x is
A(x) =1/2(—1/2x + 5+ 5)(5) = —5/4x + 25. The volume is
187.5 units®.

Section 7.3

15.

97/2 units®
2 — 27 units®

48m+/3/5 units?

. 7% /4 units®

(a) 4m/5
(b) 87/15
(c) m/2

(d) 57/6
(a) 47/3
(b) /3

(c) 4m/3
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