December 1 Math 3260 sec. 51 Fall 2025

6.2 Eigenvalues & Eigenvectors

Definition

Let *A* be an $n \times n$ matrix. An **eigenvalue** of *A* is a scalar λ for which there exists a nonzero vector \vec{x} such that

$$A\vec{x} = \lambda \vec{x}.\tag{1}$$

For a given eigenvalue λ , a nonzero vector \vec{x} satisfying equation (1) is called an **eigenvector** corresponding to the eigenvalue λ .

The Characteristic Equation

Let A be an $n \times n$ matrix. The function

$$P_A(\lambda) = \det(A - \lambda I_n)$$

is called the **characteristic polynomial** of the matrix A. The equation

$$P_A(\lambda) = 0$$
, i.e., $det(A - \lambda I_n) = 0$

is called the **characteristic equation** of the matrix A.

Theorem

Let A be an $n \times n$ matrix, and let $P_A(\lambda)$ be the characteristic polynomial of A. The number λ_0 is an eigenvalue of A if and only if $P_A(\lambda_0) = 0$. That is, λ_0 is an eigenvalue of A if and only if it is a root of the characteristic equation $\det(A - \lambda I_n) = 0$.

Example
$$A = \begin{bmatrix} 4 & 3 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix}$$

The characteristic polynomial was

$$P_A(\lambda) = -(3+\lambda)(\lambda-5)(\lambda-1) = -\lambda^3 + 3\lambda^2 + 13\lambda - 15.$$

Find an eigenvector for each eigenvalue.

Last time, we concluded that the three eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 5$ and $\lambda_3 = 1$. For $\lambda_2 = 5$, the matrix

$$A - 5I_3 = \begin{bmatrix} -1 & 3 & -1 \\ 1 & -3 & 2 \\ 0 & 0 & -8 \end{bmatrix} \quad \text{with} \quad \text{rref}(A - 5I_3) = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

So a solution \vec{x} to $(A - 5I_3)\vec{x} = \vec{0}_3$ would have entries, $x_1 = 3x_2$, x_2 is free, and $x_3 = 0$. The eigenvectors associated with $\lambda_2 = 5$ are

$$\vec{x} = t\langle 3, 1, 0 \rangle, \quad t \neq 0.$$

An example eigenvector is $\vec{v}_2 = \langle 3, 1, 0 \rangle$.

$$A - (-3)T_{3} = \begin{pmatrix} 7 & 3 & -1 \\ 1 & S & Z \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{rect}} \begin{pmatrix} 1 & 0 & -11/32 \\ 0 & 1 & 15/32 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c} \chi_{1} = \frac{11}{32} \times 3 \\ \chi_{2} = \frac{-15}{32} \times 3 \\ \chi_{3} - 6 \text{ free} \end{array}$$

$$\begin{array}{c} \chi_{3} = \begin{pmatrix} \frac{11}{32} \times 3 & -\frac{1}{32} \times 3 \\ \chi_{3} - \frac{1}{32} \times 3 & \frac{1}{32} \times 3 \end{pmatrix}$$

$$= \chi_{3} \begin{pmatrix} \frac{11}{32} & -\frac{15}{32} & 1 \end{pmatrix} \qquad \chi_{3} \neq 0$$

setting x3 = 32, an eigenvector is

V= (11,-15,32).

November 26, 2025

4/35

 $A = \begin{bmatrix} 4 & 3 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix} \qquad \lambda = 3 \qquad \text{solve} \qquad \left(A - (-3) \sum_{3} \chi = 0_{3} \right)$

$$A = \begin{bmatrix} 4 & 3 & -1 \\ 1 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix} \qquad \lambda_7 = 1 \qquad (A - 1 I_7) \stackrel{?}{\times} = \stackrel{?}{O}_3$$

$$A - 1 I_3 = \begin{bmatrix} 3 & 3 & -1 \\ 1 & 1 & 2 \\ 0 & 0 & -4 \end{bmatrix} \qquad \text{cref} \qquad \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi = -\chi_2 \\ \chi_2 - free \\ \chi_3 = 0 \end{array}$$

$$\stackrel{?}{\times} = \begin{pmatrix} -\chi_2 \\ \chi_2 - free \end{pmatrix} \qquad \stackrel{?}{\times} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \\ \end{array}$$

$$A = \text{eigenve that } \text{if}$$

$$\begin{array}{c} \chi_7 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{array}{c} \chi_7 = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ \end{array}$$

Eigenspaces & Eigenbases

Definition

Let A be an $n \times n$ matrix and λ_0 be an eigenvalue of A. The eigenspace corresponding to the eigenvalue λ_0 is the set

$$E_A(\lambda_0) = \left\{ \vec{x} \in R^n \mid A\vec{x} = \lambda_0 \vec{x} \right\} = \mathcal{N}(A - \lambda_0 I_n).$$

An **eigenspace** is a null space, so it's a subspace of \mathbb{R}^n . We can find a basis the way we regularly find the basis for a null space.

An **eigenspace** is all of the eigenvectors for a given eigenvalue with the zero vector thrown in to make a subspace.

Example

Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$. Find the characteristic polynomials $P_A(\lambda)$ and $P_B(\lambda)$.

$$P_{A}(\lambda) = \det(A - \lambda I_{3}) = \det \begin{pmatrix} 2 - \lambda & 0 & 0 \\ 0 & z - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix}$$

$$= (z - \lambda)(z - \lambda)(4 - \lambda) = (z - \lambda)^{2}(4 - \lambda)$$

$$P_{B}(\lambda) = \det(B - \lambda I_{3}) = \det \begin{pmatrix} z - \lambda & 1 & 0 \\ 0 & z - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix}$$

$$= (z-x)^{2}(Y-x)$$

November 26, 2025

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix} P_A(\lambda) = P_B(\lambda) = (2 - \lambda)^2 (4 - \lambda)$$

Find bases for the eigenspaces $E_A(2)$ and $E_B(2)$.

Fig. (2) =
$$\mathcal{N}(A - zI_3)$$
 were solving $(A - zI_3)\overset{\sim}{\times} = \overset{\circ}{\circ}_3$

$$A - zI_3 = \overset{\circ}{\circ}_0 \overset{\circ}{\circ}_1 \overset{\circ}{\circ}_2 \overset{\circ}{\circ}_3 \overset{\circ}{\circ}_3$$

$$B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix} \qquad E_{B}(z) = \mathcal{N}(B - z I_{3})$$

$$B - z I_{3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{\text{rret}} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\chi_{1} - \text{free}$$

$$\chi_{2} = \chi_{3} = 0$$

$$\chi_{3} = (\chi_{1}, 0, 0) = \chi_{1}(\chi_{1}, 0, 0)$$

$$A \text{ basis for } E_{B}(z) \text{ is } \{(\chi_{1}, 0, 0)\}.$$

Two Types of Multiplicities

Geometric Multiplicity

Let A be an $n \times n$ matrix and λ_0 be an eigenvalue of A. The dimension of the eigenspace, $\dim(\mathcal{E}_A(\lambda_0))$, corresponding to λ_0 is called the **geometric multiplicity** of λ_0 .

To determine the geometric multiplicity, we have to find the dimension of the eigenspace—i.e., how many free variables are there in the equation

$$(A - \lambda_0 I_n)\vec{x} = \vec{0}_n.$$

Algebraic Multiplicity

Let A be an $n \times n$ matrix and λ_0 be an eigenvalue of A. The **algebraic multiplicity** of λ_0 is its multiplicity as the root of the characteristic equation $P_A(\lambda) = 0$. That is, if $(\lambda - \lambda_0)^k$ is a factor of $P_A(\lambda)$ and $(\lambda - \lambda_0)^{k+1}$ is not a factor of $P_A(\lambda)$, then the algebraic multiplicity of λ_0 is k.

If the characteristic polynomial was $(3 - \lambda)^4 (7 - \lambda)^2 (-2 - \lambda)$, the eigenvalues with their algebraic multiplicities would be

 $\lambda = 3$ algebraic multiplicity 4,

 $\lambda = 7$ algebraic multiplicity 2,

 $\lambda = -2$ algebraic multiplicity 1.

The algebraic multiplicity is always greater than or equal to the geometric multiplicity.

Example

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$
 $P_A(\lambda) = (2 - \lambda)^2 (4 - \lambda)$ and $P_B(\lambda) = (2 - \lambda)^2 (4 - \lambda)$.

Both have eigenvalue $\lambda = 2$ with **algebraic multiplicity** of two.

$$\underbrace{\left\{\langle 1,0,0\rangle,\langle 0,1,0\rangle\right\}}_{\text{basis for }E_{B}(2)} \underbrace{\left\{\langle 1,0,0\rangle\right\}}_{\text{basis for }E_{B}(2)}$$

 $\lambda=2$ has geometric multiplicity **two** as an eigenvalue of A and it has a geometric multiplicity **one** as an eigenvalue of B.

If a matrix has enough linearly independent eigenvectors, we may be able to build a basis for \mathbb{R}^n out of eigenvectors. So the geometric multiplicity is of interest as is their linear independence.

Theorem

Let $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ be a set of eigenvectors of an $n \times n$ matrix corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$. Then the set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is linearly independent.

Note

If A is an $n \times n$ matrix with n distinct eigenvalues, then A has a set of n linearly independent eigenvectors.

Definition

Let A be an $n \times n$ matrix. If A has n linearly independent eigenvectors, $\vec{v}_1, \ldots, \vec{v}_n$ (combined across all eigenvalues), then the set $\mathcal{E}_A = \{\vec{v}_1, \ldots, \vec{v}_n\}$ is a basis for R^n called an **eigenbasis** for A.

Suppose *A* is $n \times n$

- ▶ If A has n distinct eigenvalues, it is guaranteed to have an eigenbasis.
- ▶ If A has fewer than n distinct eigenvalues, then
 - it has an eigenbasis if the sum of all geometric multiplicities is n;
 - ▶ it doesn't have an eigenbasis if the sum of all geometric multiplicities is smaller than n.

Example

Find an eigenbasis for $A = \begin{bmatrix} -2 & 8 \\ 1 & 5 \end{bmatrix}$ or show that it is not possible.

We need to find eigenvaluer + associated eigenvectors.

$$P_{A}(\lambda) = det(A - \lambda I_{z})$$

$$= det \begin{bmatrix} -2 - \lambda & 8 \\ 1 & 5 - \lambda \end{bmatrix}$$

$$= (-z - \lambda)(5 - \lambda) - (1)(8)$$

$$= \lambda^{2} - 3\lambda - 10 - 8$$

$$= \lambda^{2} - 3\lambda - 18$$

solur
$$P_A(\lambda)=0$$
 $\lambda^2-3\lambda-18=0$ $(\lambda-6)(\lambda+3)=0$

There are two e vals. $\lambda_1 = 6$ at $\lambda_2 = -3$

$$A = \begin{bmatrix} -2 & 8 \\ 1 & 5 \end{bmatrix}, \quad \text{For} \quad \lambda_1 = 6 \quad \text{solve} \quad (A - 6I_2) \stackrel{?}{\cancel{\times}} = \stackrel{?}{\cancel{\circ}}_2$$

$$A - 6I_2 = \begin{bmatrix} -8 & 8 \\ 1 & -1 \end{bmatrix} \xrightarrow{\text{ret}} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$\chi_1 = \chi_2, \quad \chi_2 - \text{fin}$$

$$A = \begin{bmatrix} -2 & 8 \\ 1 & 5 \end{bmatrix}, \quad \text{For} \quad \lambda_{z} = -3, \quad (A - (-3) \sum_{z}) \vec{\chi} = \vec{O}_{z}$$

$$A + 3 \sum_{z} = \begin{bmatrix} 1 & 8 \\ 1 & 8 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 8 \\ 0 & 0 \end{bmatrix}$$

$$\chi_{1} = -8 \times z$$

$$\chi_{2} = \text{free}$$

A vector is
$$\vec{V}_2 = (-8, \vec{D})$$

X = (-8x1, x2) = x2 (-8,1)

An eigenbasis for A is { <1,17, <-8,17}