## December 5 Math 2306 sec. 52 Fall 2022

## Section 17: Fourier Series: Trigonometric Series

Suppose $f$ is piecewise continuous on the interval $(-p, p)$. Then we can write $f$ as a Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x, \quad \text { and } \\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
\end{aligned}
$$

Example

$$
a_{0}=3, a_{n}=0, b_{n}=\frac{3}{n \pi}\left(1-(-1)^{n}\right)
$$

Let's find the series for

$$
\begin{gathered}
f(x)=\left\{\begin{array}{lc}
0, & -\pi<x<0 \\
3, & 0<x<\pi
\end{array}\right. \\
f(x)=\frac{3}{2}+\sum_{n=1}^{\infty} \frac{3}{n \pi}\left(1-(-1)^{n}\right) \sin (n x)
\end{gathered}
$$

