Exam 2 Math 2306 sec. 51

Fall 2021
Name: (4 pts)
Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
Total $(+4)$	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct.

Show all of your work on the paper provided to receive full credit.

1. Show that if a and b are different real numbers then the functions $f_{1}(x)=e^{a x}$ and $f_{2}(x)=e^{b x}$ are linearly independent on the interval $(-\infty, \infty)$.
we con use the wronsteian.

$$
\begin{aligned}
& \begin{aligned}
& W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
e^{a x} & e^{b x} \\
a e^{a x} & b e^{b x}
\end{array}\right| \\
&=e^{a x}\left(b e^{b x}\right)-a e^{a x}\left(e^{b x}\right) \\
&=(b-a) e^{a x} e^{b x} \\
&\text { Smut } \left.e^{a x} \cdot e^{b x}>0 \text { and } b \neq a \text {, (ie. } b-a \neq 0\right) \\
& W\left(f_{1}, f_{i}\right)(x) \neq 0 \text { They ane there fore }
\end{aligned} .
\end{aligned}
$$

2. An aquarium contains 50 gallons of water into which 10 pounds of salt is dissolved. Salt water containing $\frac{3}{10} \mathrm{lbs}$ of salt per gallon is pumped in at a rate of 2 gallons per minute, and the well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in the tank at time t.

$$
\frac{d A}{d t}=s_{i} C_{i}-r_{0} C_{0}
$$

$$
c_{i}=2 \mathrm{gal} / \mathrm{min}=r_{0}
$$

$$
C_{i}=\frac{3}{10} \frac{1 b}{\text { gal }}
$$

The Volume $V(t)=50$ gal since $r_{i}=r_{0}$.

$$
\begin{aligned}
& \text { So } c_{0}=\frac{A}{50} \\
& \frac{d A}{d t}=2\left(\frac{3}{10}\right)-2\left(\frac{A}{50}\right)
\end{aligned}
$$

$$
\frac{d A}{d t}+\frac{1}{25} A=\frac{3}{5} \quad A(0)=101 b
$$

$$
P(t)=\frac{1}{25}, \mu=e^{\int \frac{1}{25} d t}=e^{\frac{t}{25}}
$$

$$
\left(e^{\frac{t}{2 s}} A\right)^{\prime}=\frac{3}{s} e^{t / 2 s}
$$

$$
{ }^{1 / 25} A=\int \frac{3}{5} e^{\frac{t}{2 s}} d t=\frac{3}{s}(25) e^{\frac{t}{8 s}}+k
$$

$$
A=15+k e^{\frac{-t}{25}}
$$

$$
A(0)=10 \Rightarrow 15+k=10 \Rightarrow k=-5
$$

The amount of set is

$$
A=15-5 e^{-\frac{t}{25}} \quad \text { lbs }
$$

3. Find the general solution of the nonhomogeneous ODE.

$$
y^{\prime \prime}-3 y^{\prime}+2 y=2 e^{x}
$$

Find yo: $m^{2}-3 m+2=0$

$$
\begin{aligned}
& \quad(m-1)(m-2)=0 \Rightarrow m=1 \text { or } m=2 . \\
& y_{1}=e^{x}, y_{2}=e^{2 x}, y_{c}=c_{1} e^{x}+c_{2} e^{2 x}
\end{aligned}
$$

Find Y_{p} : Using undetermined colt.

$$
\begin{array}{r}
y_{p}=\left(A e^{x}\right) x=A x e^{x} \\
y_{p}=A e^{x}+A x e^{x} \\
y_{p}^{\prime \prime}=A e^{x}+A e^{x}+A x e^{x} \\
y_{p^{\prime \prime}}-3 y r+2 y_{p}=2 e^{x} \\
2 A e^{x}+A x e^{x}-3\left(A e^{x}+A x e^{x}\right)+2 A x e^{x}=2 e^{x} \\
x e^{x}(A-3 A+2 A)+e^{x}(2 A-3 A)=2 e^{x} \\
-A e^{x}=2 e^{x} \\
A=-2
\end{array}
$$

so $y_{p}=-2 x e^{x}$
The general solution

$$
y=c_{1} e^{x}+c_{2} e^{2 x}-2 x e^{x}
$$

4. Find a particular solution of the nonhomogeneous ODE. A fundamental solution set $\left\{y_{1}, y_{2}\right\}$ for the associated homogeneous equation is given.

$$
x^{2} y^{\prime \prime}-x y^{\prime}=4 x^{2}, \quad x>0 \quad y_{1}=1, \quad y_{2}=x^{2}
$$

In standard form, the $O D E$ is

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}=4 .
$$

Using variation of parameters.

$$
\begin{aligned}
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& g(x)=4, \quad w=\left|\begin{array}{cc}
1 & x^{2} \\
0 & 2 x
\end{array}\right|=2 x \\
& u_{1}=\int \frac{-g y_{2}}{w} d x=\int \frac{-4\left(x^{2}\right)}{2 x} d x=-2 \int x d x=-x^{2} \\
& u_{2}=\int \frac{g y_{1}}{w} d x=\int \frac{4 \cdot 1}{2 x} d x=2 \int \frac{1}{x} d x=2 \ln x \\
& y_{p}=-x^{2}(1)+(2 \ln x) x^{2} \\
& y_{p}=2 x^{2} \ln x-x^{2}
\end{aligned}
$$

* Since $-x^{2}$ can be combined with $y c$ we could say

$$
y_{\rho}=2 x^{2} \ln x
$$

5. Find the general solution of the homogeneous ODE.

$$
y^{\prime \prime}-4 y^{\prime}+8 y=0
$$

The characteristic equation

$$
\begin{aligned}
& m^{2}-4 m+8=0 \\
& m^{2}-4 m+4=-4 \\
& (m-2)^{2}=-4 \Rightarrow m-2= \pm 2 i \Rightarrow m=2 \pm 2 i \\
& y_{1}=e^{2 x} \cos (2 x), \quad y_{2}=e^{2 x} \sin (2 x) \\
& y=c_{1} e^{2 x} \cos (2 x)+c_{2} e^{2 x} \sin (2 x)
\end{aligned}
$$

6. Find the form of the general solution of the nonhomogeneous ODE when using the method of undetermined coefficients. Don't bother finding the coefficients, A, B, etc.

$$
\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+8 y & =5 e^{2 x} \cos (2 x)+x \quad \text { Note } y_{i} \text { is above in } \# S \\
\text { Let } g_{1}(x) & =S e^{2 x} \cos (2 x) \\
y_{p_{1}} & =\left(A e^{2 x} \cos (2 x)+B e^{2 x} \sin (2 x)\right) x \\
y_{p_{1}} & =A \times e^{2 x} \cos (2 x)+B \times e^{2 x} \sin (2 x)
\end{aligned}
$$

Let $g_{2}(x)=x$

$$
y p_{2}=C x+D
$$

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

