Exam 4 Math 2306 sec. 54

Fall 2021
Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.
Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
EC	
Total	

INSTRUCTIONS: There are 5 problems worth 20 points each plus one extra credit problem worth 10 points. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct.

Show all of your work on the paper provided to receive full credit.

1. Suppose y solves the given initial value problem. $\quad \frac{d y}{d t}+3 y=4 e^{t}, \quad y(0)=2$
$\mathscr{L}\left\{y^{\prime}+3 y\right\}=\mathscr{L}\left\{4 e^{t}\right\}$
$s Y-y(x)+3 Y=\frac{4}{s-1}$

$$
(s+3) Y-2=\frac{4}{s-1}
$$

$$
\begin{aligned}
& (s+3) P=\frac{4}{s-1}+2 \\
& Y_{1}=\frac{4}{(s-1)(s+3)}+\frac{2}{s+3}
\end{aligned}
$$

Then the Laplace transform of y is (circle the correct $Y(s)$)
(a) $\quad Y(s)=\frac{3}{(s-1)(s+2)}+\frac{4}{s+2}$
(b) $\quad Y(s)=\frac{4}{(s-1)(s+3)}+\frac{2}{s+3}$
(c) $\quad Y(s)=\frac{4}{(s+1)(s-3)}+\frac{2}{s-3}$
(d) $\quad Y(s)=\frac{3}{(s+1)(s-2)}+\frac{4}{s-2}$
2. Solve the IVP using the Laplace transform.

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+10 y=0, \quad y(0)=1, \quad y^{\prime}(0)=4 \quad \text { Let } Y=\mathscr{L}\{y\} \\
& \mathscr{L}\left\{y^{\prime \prime}-2 y^{\prime}+10 y\right\}=\mathscr{L}\{0\}=0 \\
& s^{2} Y-s y(0)-y^{\prime}(0)-2\left(s^{\prime} Y-y(0)\right)+10 Y(s)=0 \\
& 1 \\
& \left(s^{2}-2 s+10\right) Y(s)-s-4+2=0 \\
& \left(s^{2}-2 s+10\right) Y=s+2 \Rightarrow Y(s)=\frac{s+2}{s^{2}-2 s+10}
\end{aligned}
$$

$b^{2}-4 a c=4-4 \cdot 1 \cdot 10<0 \Rightarrow$ Complete the 59ware.

$$
\begin{gathered}
s^{2}-2 s+1-1+10=(s-1)^{2}+9=(s-1)^{2}+3^{2} \\
s+2=s-1+3 \\
Y(s)=\frac{s+2}{(s-1)^{2}+3^{2}}=\frac{s-1}{(s-1)^{2}+3^{2}}+\frac{3}{(s-1)^{2}+3^{2}} \\
\mathscr{L}^{-1}\left\{\frac{s-1}{(s-1)^{2}+3^{2}}\right\}=e^{1 t} \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\} \\
\mathscr{L}^{-1}\left\{\frac{3}{(s-1)^{2}+3^{2}}\right\}=e^{1 t} \mathscr{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right) \\
{\left[\begin{array}{l}
t(t)=e^{t}(3+)+e^{t} \sin (3 t)
\end{array}\right.}
\end{gathered}
$$

3. An RC series circuit with resistance 100 ohms and capacitance 1 millifarad ($\frac{1}{1000}$ farads) has initial charge on the capacitor $q(0)=1$ Coulomb. After 1 second, a unit impulse $E(t)=\delta(t-1)$ volts is applied. Use the Laplace transform to find the charge $q(t)$ on the capacitor for $t>0$. That is, solve the IVP

$$
100 \frac{d q}{d t}+1000 q=\delta(t-1), \quad q(0)=1
$$

Recall that for any $a \geq 0, \mathscr{L}\{\delta(t-a)\}=e^{-a s}$.

$$
\begin{aligned}
& \text { Let } Q(s)=\mathcal{L}\{q(t)\} \text { Putin standard form } \\
& q^{\prime}+10 q=\frac{1}{100} \delta(t-1) \\
& \mathcal{L}\left\{q^{\prime}+10 q\right)=\mathcal{L}\left[\frac{1}{100} \delta(t-1)\right\}=\frac{1}{100} e^{-15} \\
& S Q(s)-q(0)+10 Q(s)=\frac{1}{100} e^{-s}
\end{aligned}
$$

$$
1
$$

$$
(s+10) Q(s)-1=\frac{1}{100} e^{-5}
$$

$$
Q(\nu)=\frac{1}{100} \cdot \frac{e^{-5}}{5+10}+\frac{1}{5+10}
$$

$$
\mathscr{L}^{-1}\left\{\frac{1}{s+10}\right\}=e^{-10 t}
$$

$$
\mathscr{L}^{-1}\left\{e^{-s} F(s)\right\}=f(t-1) u(t-1)
$$

$$
g(t)=\mathcal{L}^{-1}\{Q(s)\}
$$

$$
q(t)=\frac{1}{100} e^{-10(t-1)} u(t-1)+e^{-10 t}
$$

4. The following integrals formulas may be helpful. For any nonzero constant k,

$$
\int x \cos (k x) d x=\frac{x}{k} \sin (k x)+\frac{1}{k^{2}} \cos (k x)+C, \quad \int x \sin (k x) d x=-\frac{x}{k} \cos (k x)+\frac{1}{k^{2}} \sin (k x)+C .
$$

Let $f(x)=2 \pi x$, for $0<x<\frac{\pi}{2}$. Determine the half-range sine series of f.

$$
\begin{aligned}
& P=\frac{\pi}{2}, \frac{n \pi x}{p}=\frac{n \pi x}{\frac{\pi}{2}}=2 n x \\
& b_{n}=\frac{2}{\pi / 2} \int_{0}^{\pi / 2} f(x) \sin (2 n x) d x \\
& =\frac{4}{\pi} \int_{0}^{\pi / 2}(2 \pi x) \sin (2 n x) d x \\
& =8 \int_{0}^{\pi / 2} x \sin (2 n x) d x \quad k=2 n, \\
& =8\left[\left.\frac{-x}{2 n} \cos (2 n x)\right|_{0} ^{\pi / 2}+\left.\frac{1}{4 n^{2}} \sin (2 n x)\right|_{0} ^{\pi / 2}\right. \\
& =8\left[\frac{-\pi / 2}{2 n} \operatorname{Cos}(n \pi)-0\right]=-\frac{8 \pi}{4 n}(-1)^{n} \\
& =\frac{2 \pi}{n}(-1)^{n+1} \\
& f(x)=\sum_{n=1}^{\infty} \frac{2 \pi(-1)^{n+1}}{n} \sin (2 n x)
\end{aligned}
$$

5. Find the half-range sine series of $f(x)=\pi$, for $0<x<\pi$.

$$
p=\pi
$$

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \cdot \int_{0}^{\pi} f(x) \sin (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \pi \sin (n x) d x \\
& =2\left[\left.\frac{-1}{n} \cos (n x)\right|_{0} ^{\pi}\right. \\
& =-\frac{2}{n}[\cos (n \pi)-\cos (0)] \\
& =\frac{-2}{n}\left[(-1)^{n}-1\right]=\frac{2}{n}\left(1-(-1)^{n}\right)
\end{aligned}
$$

$$
f(x)=\sum_{n=1}^{\infty} \frac{2}{n}\left(1-(-1)^{n}\right) \sin (n x)
$$

(Extra Credit) Consider the function $f(x)=\left\{\begin{array}{ll}1, & 0<x<1 \\ 2-x, & 1 \leq x<2\end{array}\right.$.

Below are three plots labeled (A), (B) and (C). For each plot, determine if it is the graph of the half-range cosine series of f, the half-range sine series f, or neither of these Fourier series of f.
(A) \qquad
(B) \qquad
(C) \qquad

(You can write "cosine," "sine," or "neither.")

