February 11 Math 3260 sec. 51 Spring 2022

Section 1.8: Intro to Linear Transformations

Recall that the product $A\mathbf{x}$ is a linear combination of the columns of A. This turns out to be a vector.

If the columns of A are vectors in \mathbb{R}^m , and there are n of them, then

- ightharpoonup A is an $m \times n$ matrix,
- ▶ the product $A\mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^n , and
- the vector $\mathbf{b} = A\mathbf{x}$ is a vector in \mathbb{R}^m .

Remark: We can think of a matrix A as an **object that acts** on vectors \mathbf{x} in \mathbb{R}^n (via the product $A\mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^m .

Transformation from \mathbb{R}^n to \mathbb{R}^m

Definition: A transformation T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

Remark: Such a transformation can be called a **function** or a **mapping**. It will take a vector as an input and spit out a vector as an output.

Transformation from \mathbb{R}^n to \mathbb{R}^m

Function Notation: If a transformation T takes a vector \mathbf{x} in \mathbb{R}^n and maps it to a vector $T(\mathbf{x})$ in \mathbb{R}^m , we can write

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

which reads "T maps \mathbb{R}^n into \mathbb{R}^m ."

And we can write

$$\mathbf{x}\mapsto T(\mathbf{x})$$

which reads " \mathbf{x} maps to T of \mathbf{x} ."

The following vertically stacked notation is often used:

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

 $\mathbf{x} \mapsto T(\mathbf{x})$

Key Terms

For $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$,

- $ightharpoonup \mathbb{R}^n$ is the **domain**, and
- $ightharpoonup \mathbb{R}^m$ is called the **codomain**.
- For **x** in the domain, $T(\mathbf{x})$ is called the **image** of **x** under T. (We can call **x** a **pre-image** of $T(\mathbf{x})$.)
- The collection of all images is called the range.
- ▶ If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A\mathbf{x}$.

Matrix Transformation Example

Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$$
. Define the transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by the mapping $T(\mathbf{x}) = A\mathbf{x}$.

(a) Find the image of the vector $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ under T.

$$T(\vec{u}) = A\vec{u} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -3 \\ -3 \end{bmatrix} = \begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix}$$

Example Continued...

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}, \quad T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

(b) Determine a vector
$$\mathbf{x}$$
 in \mathbb{R}^2 whose image under T is $\begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$.

Find $\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$ such that $\vec{\mathbf{T}}(\vec{\mathbf{x}}) = \begin{bmatrix} -9 \\ -9 \\ 9 \end{bmatrix}$

This gluss the notice equation

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_{\vee} \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$$

6/14

we can use the anymented matrix

$$\begin{bmatrix} 1 & 3 & -4 \\ 2 & 4 & -4 \\ 0 & -2 & 4 \end{bmatrix} \xrightarrow{\text{riet}} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X_{z} = -2$$

A pre image of
$$\begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$$
 is $\begin{bmatrix} 2 \\ -2 \end{bmatrix} = \overline{\chi}$.

Example Continued...

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}, \quad T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

(c) Determine if $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is in the range of T.

This is asking if
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = T(\vec{x})$$
 for Some \vec{X} vector (s) in \vec{R}^2 .

we can consider the equation

$$A \stackrel{?}{\sim} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Using the augmented motive

[131] cref [100]
[240] cref [010]
[0.721]

The system
$$A\vec{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 is Inconsistent, hence $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is not in the range of T .

Linear Transformations

Definition: A transformation *T* is **linear** provided

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Remark 1: I made a big deal in section 1.4 about these two properties. These properties are key when we use the term **Linear**.

Remark 2: Every matrix transformation (e.g. $\mathbf{x} \mapsto A\mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be expressed in terms of matrix multiplication.

A Theorem About Linear Transformations:

If T is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0}$$
, and

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

for scalars c, and d and vectors \mathbf{u} and \mathbf{v} .

And in fact

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \cdots + c_kT(\mathbf{u}_k).$$

Remark: This says that the image of a linear combination is the linear combination of the images.

Example

Let r be a nonzero scalar. The transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = r\mathbf{x}$$

is a linear transformation¹.

Example: Show that T is a linear transformation.

We can show that T satisfies the two properties. Let
$$\vec{u}$$
, \vec{v} be in \mathbb{R}^2 and C be any scalar.

 $T(\vec{u}+\vec{v}) = r(\vec{u}+\vec{v}) = r\vec{u}+r\vec{v} = T(\vec{u})+T(\vec{v})$

Alro,
$$T(c\vec{u}) = r(c\vec{u}) = r(\vec{u})$$

= $cr\vec{u} = c(r\vec{u}) = cT(\vec{u})$

T satisfies both proporties of a linear formation. Hence it is a linear transformation.

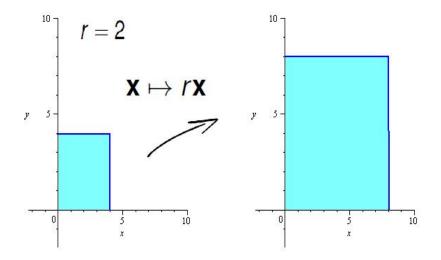


Figure: Geometry of dilation $\mathbf{x}\mapsto 2\mathbf{x}$. The 4 by 4 square maps to an 8 by 8 square.