February 11 Math 3260 sec. 52 Spring 2022

Section 1.8: Intro to Linear Transformations
Recall that the product $A \mathbf{x}$ is a linear combination of the columns of A. This turns out to be a vector.

If the columns of A are vectors in \mathbb{R}^{m}, and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A \mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^{n}, and
- the vector $\mathbf{b}=A \mathbf{x}$ is a vector in \mathbb{R}^{m}.

Remark: We can think of a matrix A as an object that acts on vectors \mathbf{x} in \mathbb{R}^{n} (via the product $A \mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^{m}.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition: A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

Remark: Such a transformation can be called a function or a mapping. It will take a vector as an input and spit out a vector as an output.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Function Notation: If a transformation T takes a vector \mathbf{x} in \mathbb{R}^{n} and maps it to a vector $T(\mathbf{x})$ in \mathbb{R}^{m}, we can write

$$
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

which reads " T maps \mathbb{R}^{n} into \mathbb{R}^{m}."
And we can write

$$
\mathbf{x} \mapsto T(\mathbf{x})
$$

which reads "x maps to T of \mathbf{x}."
The following vertically stacked notation is often used:

$$
\begin{aligned}
T & : \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
& \mathbf{x} \mapsto T(\mathbf{x})
\end{aligned}
$$

Key Terms

For $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$,

- \mathbb{R}^{n} is the domain, and
$-\mathbb{R}^{m}$ is called the codomain.
- For \mathbf{x} in the domain, $T(\mathbf{x})$ is called the image of \mathbf{x} under T. (We can call \mathbf{x} a pre-image of $T(\mathbf{x})$.)
- The collection of all images is called the range.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A \mathbf{x}$.

Matrix Transformation Example
Let $A=\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]$. Define the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ by the mapping $T(\mathbf{x})=A \mathbf{x}$.
(a) Find the image of the vector $\mathbf{u}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ under T.
we wont to find the vector $T(\vec{u})$.

$$
T(\vec{u})=A \vec{u}=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-10 \\
6
\end{array}\right]
$$

$\left[\begin{array}{c}-8 \\ -10 \\ 6\end{array}\right]$ is the image of $\left[\begin{array}{c}1 \\ -3\end{array}\right]$ under T.

Example Continued...

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right], \quad T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^{2} whose image under T is $\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$. we con state this as find a vector \vec{x} such that $T(\vec{x})=\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$, ie. $A \vec{x}=\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$.
The matrix equ is

$$
\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-4 \\
4
\end{array}\right]
$$

we con use on ang meruted matri x

$$
\left[\begin{array}{ccc}
1 & 3 & -4 \\
2 & 4 & -4 \\
0 & -2 & 4
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=2 \\
& x_{2}=-2
\end{aligned}
$$

Hence a preimage for $\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$ under T
is $\vec{x}=\left[\begin{array}{c}2 \\ -2\end{array}\right]$.

Example Continued...

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right], \quad T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

(c) Determine if $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is in the range of T.

This is asking if $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is an out put $T(\vec{x})$ for some \vec{x} in the domain. Is the ne on \vec{x} in \mathbb{R}^{2} such that $T(\vec{x})=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. The matrix equation is $A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ ie. $\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

The augnerted matrix is

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{array}\right] \xrightarrow{\text { sret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$A \bar{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is inconsistent.
Dence $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is not in the songe of T.

Linear Transformations

Definition: A transformation T is linear provided
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Remark 1: I made a big deal in section 1.4 about these two properties. These properties are key when we use the term Linear.

Remark 2: Every matrix transformation (e.g. $\mathbf{x} \mapsto A \mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} can be expressed in terms of matrix multiplication.

A Theorem About Linear Transformations:

If T is a linear transformation, then

$$
\begin{gathered}
T(\mathbf{0})=\mathbf{0}, \quad \text { and } \\
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
\end{gathered}
$$

for scalars c, and d and vectors \mathbf{u} and \mathbf{v}.

And in fact

$$
T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)+\cdots+c_{k} T\left(\mathbf{u}_{k}\right) .
$$

Remark: This says that the image of a linear combination is the linear combination of the images.

Example
Let r be a nonzero scalar. The transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=r \mathbf{x}
$$

is a linear transformation ${ }^{1}$.
Example: Show that T is a linear transformation.
we need to show that T satisfies the λ wo properties. Let \vec{u} and \vec{v} be in \mathbb{R}^{2} and C in \mathbb{R}.

$$
T(\vec{u}+\vec{v})=r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}=T(\vec{u})+T(\vec{v})
$$

${ }^{1}$ It's called a contraction if $0<r<1$ and a dilation when $r>1$

Also

$$
\begin{aligned}
T(c \vec{u}) & =r(c \vec{u})=r c \vec{u}=c r \vec{u} \\
& =c(r \vec{u})=c T(\vec{u}) .
\end{aligned}
$$

T satisfies both properties; Hence
T is a linear transformation.

Figure: Geometry of dilation $\mathbf{x} \mapsto \mathbf{2 x}$. The 4 by 4 square maps to an 8 by 8 square.

