February 12 Math 3260 sec. 51 Spring 2024 Section 1.9: The Matrix for a Linear Transformation

Theorem

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix *A* such that

$$\mathcal{T}(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the *j*th column of the matrix *A* is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the *j*th column of the $n \times n$ identity matrix I_n . That is,

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}.$$

The matrix A is called the **standard matrix** for the linear transformation T.

Onto and One to One

Definition

A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of *T* is all of the codomain.

Definition

A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

February 9, 2024

2/33

Some Theorems about Onto and One to One

Theorem:

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem:

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then

- (i) *T* is onto if and only if the columns of *A* span \mathbb{R}^m , and
- (ii) T is one to one if and only if the columns of A are linearly independent.

Example

Consider the linear transformation
$$\begin{array}{c} \mathcal{T}:\mathbb{R}^3 o \mathbb{R}^2 \ (x_1,x_2,x_3)\mapsto (x_3,x_1+x_2) \end{array}$$

Determine the set of all preimages¹ of **0**. State the solution as a span.

The preimages of **0** are all vectors **x** in \mathbb{R}^3 such that $T(\mathbf{x}) = \mathbf{0}$. We found the standard matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. The preimages of the zero vector are solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. Using row reduction, we found this to be

Span
$$\left\{ \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} \right\}$$
.

¹This actually has a special name. The set of all preimages of the zero vector is called the *kernel* of *T*.

Example

Consider the linear transformation
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x_1, x_2, x_3) \mapsto (x_3, x_1 + x_2)$
Is T one to one? Is T onto? The standard matrix
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $a = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $a = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ with ref $a = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

1 1

◆□> ◆圖> ◆理> ◆理> 三連

Example

Consider the linear transformation $\begin{array}{c} T:\mathbb{R}^2 o \mathbb{R}^3\\ (x_1,x_2)\mapsto (x_2,0,-x_1) \end{array}$. Determine whether T is one to one, onto, neither or both. An option is to find the standard matrix A. we need T(t,) ad T(t) $T(e_{i}) = T(i_{i}, o_{i}) = (o_{i}, o_{i}, -1)$ $T(\vec{e}_{v}) = T(o, 1) = (1, 0, 0).$ $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{bmatrix}$. Le can consider the honosurreour equation $T(x) = \vec{0}$. イロト イヨト イヨト イヨト

Ax=0. The argumented matrix is

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 $freet$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $x_2=0$
The system has only the trivial solution.
T is one to one
A only has two columns, so its
columns east spen \mathbb{R}^3
 \overline{T} is not onto
 \overline{T} is not onto
 \overline{T} is not onto