February 12 Math 3260 sec. 52 Spring 2024

Section 1.9: The Matrix for a Linear Transformation

Theorem

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n} .
$$

Moreover, the $j^{\text {th }}$ column of the matrix A is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the $j^{\text {th }}$ column of the $n \times n$ identity matrix I_{n}. That is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

The matrix A is called the standard matrix for the linear transformation T.

Onto and One to One

Definition

A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}-i.e. if the range of T is all of the codomain.

Definition

A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

Some Theorems about Onto and One to One

Theorem:

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Theorem:

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then
(i) T is onto if and only if the columns of A span \mathbb{R}^{m}, and
(ii) T is one to one if and only if the columns of A are linearly independent.

Example
Consider the linear transformation

$$
\begin{gathered}
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{3}, x_{1}+x_{2}\right)
\end{gathered}
$$

Determine the set of all preimages ${ }^{1}$ of $\mathbf{0}$. State the solution as a span.
we can restate this as find al \vec{y} in \mathbb{R}^{3} such that $T(\vec{x})=\overrightarrow{0}$. We con use the standard matrix, A, and solve $A \vec{x}=\overrightarrow{0}$

$$
\begin{aligned}
& A=\left[T\left(\vec{e}_{1}, T\left(\vec{e}_{2}\right) T\left(\vec{e}_{3}\right)\right]\right. \\
& T\left(\vec{e}_{1}\right)=T(1,0,0)=(0,1+0)=(0,1) \\
& T\left(\vec{e}_{2}\right)=T(0,1,0)=(0,0+1)=(0,1)
\end{aligned}
$$

${ }^{1}$ This actually has a special name. The set of all preimages of the zero vector is called the kernel of T. '

$$
\begin{aligned}
& T\left(\vec{e}_{3}\right)=T(0,0,1)=(1,0+0)=(1,0) \\
& A=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] . \text { Considuing } A \vec{x}=\overrightarrow{0} \\
& {[A \vec{u})=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \xrightarrow{r r e f}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .} \\
& \begin{aligned}
A \vec{x}=\overrightarrow{0} & \text { if } \begin{array}{l}
x_{1}=-x_{2} \\
x_{2}-\text { is free } \\
x_{3}=0
\end{array} \\
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{c}
-x_{2} \\
x_{2} \\
0
\end{array}\right] \\
& =x_{3}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
\end{aligned}
\end{aligned}
$$

The set of preimages of \vec{O} is spon $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$.

Example

Consider the linear transformation

$$
\begin{aligned}
& T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
&\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{3}, x_{1}+x_{2}\right)
\end{aligned}
$$

Is T one to one? Is T onto?
we found that $T(\vec{x})=0$ has nontrivial solutions
Hence T is not oneto ore
we found standard matron $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.
A has two pivot positions, so its columns span \mathbb{R}^{2}. so T is onto.

Example
Consider the linear transformation $\begin{gathered}T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\ \left(x_{1}, x_{2}\right) \mapsto\left(x_{2}, 0,-x_{1}\right)\end{gathered}$. Determine whether T is one to one, onto, neither or both.
we an find the standard matrix, A.

$$
\begin{aligned}
& A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right] \\
& T\left(\vec{e}_{1}\right)=T(1,0)=(0,0,-2) \\
& T\left(\vec{e}_{2}\right)=T(0,1)=(1,0,0) \\
& A=\left[\begin{array}{cc}
0 & 1 \\
0 & 0 \\
-1 & 0
\end{array}\right], \\
& \text { ie., } A \vec{x}=\overrightarrow{0} .
\end{aligned}
$$

$$
\left[\begin{array}{ll}
A & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=0 \\
& x_{2}=0
\end{aligned}
$$

There are no noutrivid solutions.
Hence T is one to one

A has on y t two columns, so its columns cart span, \mathbb{R}^{3}. T is not onto.

