February 13 Math 2306 sec. 52 Spring 2023

Section 6: Linear Equations Theory and Terminology

Consider the second order, linear ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=1
$$

It is easy to show that $y=x+1$ is a solution.

$$
\begin{aligned}
& y^{\prime}=1, \quad y^{\prime \prime}=0 \\
& y^{\prime \prime}-x y^{\prime}+y=x^{2}(0)-x(1)+(x+1) \stackrel{?}{=} \\
&-x+x+1 \stackrel{?}{=} 1 \\
& 1=1
\end{aligned}
$$

$x^{2} y^{\prime \prime}-x y^{\prime}+y=1$

Here are 10 more solutions to this ODE!

$$
\begin{array}{ll}
y=1 & y=x \ln x+1 \\
y=3 x-x \ln x+1 & y=7 x \ln x+8 x+1 \\
y=1-4 x \ln \sqrt{x} & y=5 x \ln \left(\frac{1}{x}\right)+1-x \\
y=16 x+x \ln x+1 & y=1-x \ln x^{3} \\
y=16 x \ln x^{2}+\frac{2}{7} x+1 & y=\frac{x}{3}+x \ln x^{7}+1
\end{array}
$$

An IVP

Consider the IVP

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=1, \quad y(1)=1, \quad y^{\prime}(1)=-1
$$

Not one of the eleven solutions that I showed solve this IVP!

This raises some questions.

- What do mean when we talk about solving an ODE or an IVP?
- How do we know when we're done solving an ODE?
- Is there something we would call THE solution?

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

$$
\begin{gathered}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
\end{gathered}
$$

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

The Principle of Superposition (homogeneous ode)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
\begin{equation*}
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l . \tag{1}
\end{equation*}
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

NOTE: Taking all of the c's to be zero will always satisfy equation (1). The set of functions is linearly independent if taking all of the c's equal to zero is the only way to make the equation true.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

Suppose we have numbers C_{1} and C_{2}
such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0 \text { for del } x \text { in } \mathbb{R} \text {. }
$$

were assuming that

$$
c_{1} \sin x+c_{2} \cos x=0 \text { for del } x
$$

is true. Let's show that $c_{1}=0$ and $c_{2}=0$.
The equation is tree for all x, so it's
true if $x=0$. when $x=0$, the equation is

$$
c_{1} \sin 0+c_{2} \cos \theta=0
$$

$\sin \theta=0$ and $\cos \theta=1$

$$
c_{1}(0)+c_{2}(1)=0 \Rightarrow c_{2}=0
$$

The equation is also true when $x=\frac{\pi}{2}$. The equation when $x=\frac{\pi}{2}$ is

$$
c_{1} \sin \left(\frac{\pi}{2}\right)+c_{2} \cos \left(\frac{\pi}{2}\right)=0
$$

$\sin \frac{\pi}{2}=1$ and $c_{2}=0$ from betore

$$
c_{1}(1)=0 \Rightarrow c_{1}=0
$$

We ie shown that $c_{1}=0$ and $c_{2}=0$ necessarily.

Hence f_{1}, f_{2} are linearly independent

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty)$

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

Suppose

$$
\begin{aligned}
& c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \text { for abl } x \\
& c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right)=0
\end{aligned}
$$

$$
x
$$

The x^{2} terms will conceal if $c_{1}=c_{3}$.
The x terns will cancel if $c_{2}=\frac{-1}{4} C_{3}$

For example, if we set $C_{3}=1, C_{1}=1$ and $c_{2}=\frac{-1}{4}$

$$
\begin{aligned}
c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right) & =0 \\
1 x^{2}+\left(\frac{-1}{4}\right)(4 x)+1\left(x-x^{2}\right) & =0 \\
x^{2}-x+x-x^{2} & \stackrel{?}{=} \\
0 & =0
\end{aligned}
$$

Le found a set of coefficients, not all zero, that make the sum $c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}=0$. The set of functions is linearly dependent.

Linear Dependence Relation

An equation with at least one c nonzero, such as

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

from this last example is called a linear dependence relation for the functions $\left\{f_{1}, f_{2}, f_{3}\right\}$.

Definition of Wronskian

Definition: Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval l. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

2 functions $\Rightarrow 2 \times 2$ matrix

$$
\begin{aligned}
w\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{ll}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sin x(-\sin x)-\cos x(\cos x) \\
& =-\sin ^{2} x-\cos ^{2} x \\
& =-\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =-1 \\
& W\left(f_{1}, f_{2}\right)(x)=-1
\end{aligned}
$$

