February 14 Math 3260 sec. 51 Spring 2022

Section 1.9: The Matrix for a Linear Transformation

Definition: A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation** provided for every vector **u** and **v** in \mathbb{R}^n and every scalar *c*

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
, and

 $T(c\mathbf{u}) = cT(\mathbf{u}).$

Remark: We know that a mapping defined by matrix multiplication $\mathbf{x} \mapsto A\mathbf{x}$ is a linear transformation. In fact, every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be realized in terms of matrix multiplication.

Elementary Vectors

Elementary Vectors: We'll use the notation \mathbf{e}_i to denote the vector in \mathbb{R}^n having a 1 in the *i*th position and zero everywhere else.

e.g. in \mathbb{R}^2 the elementary vectors are

$$\mathbf{e}_1 = \left[egin{array}{c} 1 \\ 0 \end{array}
ight], \quad ext{and} \quad \mathbf{e}_2 = \left[egin{array}{c} 0 \\ 1 \end{array}
ight],$$

in \mathbb{R}^3 they would be

$$\boldsymbol{e}_1 = \left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right], \quad \boldsymbol{e}_2 = \left[\begin{array}{c} 0\\ 1\\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{e}_3 = \left[\begin{array}{c} 0\\ 0\\ 1 \end{array} \right]$$

and so forth.

Note that in \mathbb{R}^n , the elementary vectors are the columns of the identity I_n .

February 12, 2022

Example: Matrix of Linear Transformation

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ be a linear transformation, and suppose

$$T(\mathbf{e}_1) = \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix}, \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^2 we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

to find a matrix A such that

$$\mathcal{T}(\mathbf{x}) = \mathcal{A}\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^2$.

イロト 不得 トイヨト イヨト 二日

February 12, 2022

$$T(\mathbf{e}_{1}) = \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix}, \text{ and } T(\mathbf{e}_{2}) = \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$
Let'r find Tix) for arbitrary \vec{x} in \mathbb{R}^{2} .
 $\vec{x} = \begin{bmatrix} x_{1}\\x_{2} \end{bmatrix} = x_{1}\vec{e}_{1} + x_{2}\vec{e}_{2}$

$$T(\vec{x}) = T(x_{1}\vec{e}_{1} + x_{2}\vec{e}_{2})$$

$$= T(x_{1}\vec{e}_{1}) + T(x_{2}\vec{e}_{2})$$

$$= X_{1}T(\vec{e}_{1}) + x_{2}T(\vec{e}_{2})$$

▲口> ▲圖> ▲豆> ▲豆> 三豆

February 12, 2022

୬ବଙ

$$= \chi_{1} \begin{bmatrix} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} + \chi_{2} \begin{bmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}$$
So $A = \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$ satisfier $T(\bar{x}) = A\bar{x}$.
As χ was arbitrary, this is true
for all \bar{x} in TR^{2}
Note $A = [T(\bar{e}), T(\bar{e})]$

February 12, 2022 5/27

୬ବଙ

Theorem

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the *j*th column of the matrix *A* is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the *j*th column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

February 12, 2022

6/27

The matrix A is called the **standard matrix** for the linear transformation T.

Example

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the scaling trasformation (contraction or dilation for r > 0) defined by

 $T(\mathbf{x}) = r\mathbf{x}$, for positive scalar *r*.

Find the standard matrix for T.

The standard matrix
$$A = [T(\vec{e}_1) \ T(\vec{e}_2)]$$

Note, the domain is \mathbb{R}^2 .
 $\vec{e}_i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^i$, $T(\vec{e}_i) = \vec{e}_i = \vec{e}_i \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $T(\vec{e}_2) = \vec{e}_2 = \vec{e}_2 = \vec{e}_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

イロト 不得 トイヨト イヨト 二日

So $A = \begin{bmatrix} c & o \\ o & c \end{bmatrix}$.

Check: $T(\vec{x}) = r\vec{x} = r \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} rx_1 \\ rx_2 \end{pmatrix}$

$$A\bar{x} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} rx_1 + 0x_2 \\ 0x_1 + rx_2 \end{bmatrix} = \begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$$

<ロト <回 > < 回 > < 回 > < 回 > … 回

Example: Shear Transformation

Find the standard matrix for the linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$ that maps \mathbf{e}_2 to $\mathbf{e}_2 - \frac{1}{2}\mathbf{e}_1$ and leaves \mathbf{e}_1 unchanged.

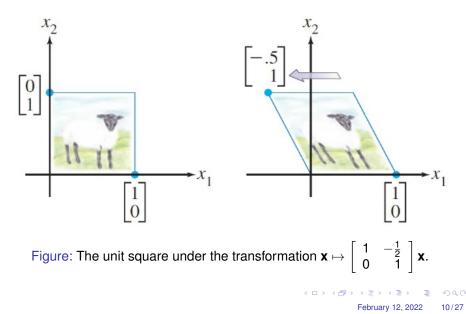
Calling this transformation T,

$$T(\vec{e}_1) = \vec{e}_1$$
 and $T(\vec{e}_2) = \vec{e}_2 - \frac{1}{2}\vec{e}_1$
 $= \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

So
$$A = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

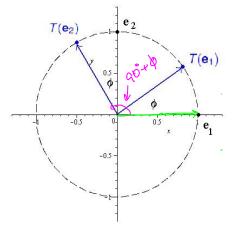
February 12, 2022 9/27

Example: Shear Transformation



Example: Rotation

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ . Find the standard matrix for T.



Using some basic trigonometry, the points on the unit circle

$$T(\mathbf{e}_1) = (\cos\phi, \sin\phi)$$

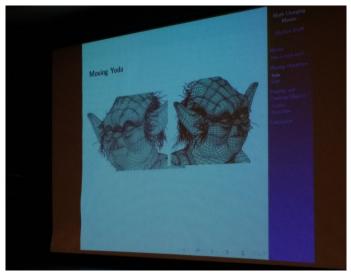
$$T(\mathbf{e}_2) = (\cos(90^\circ + \phi), \sin(90^\circ + \phi))$$

 $= (-\sin\phi,\cos\phi)$

So
$$A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$
.

February 12, 2022 11/27

Rotation in Animation

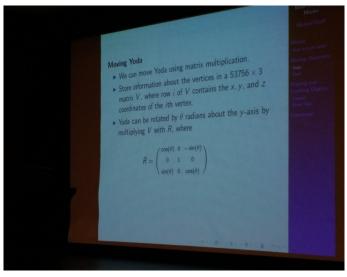


February 12, 2022 12/27

2

◆□▶ ◆圖▶ ◆理≯ ◆理≯

Rotation in Animation



February 12, 2022 13/27

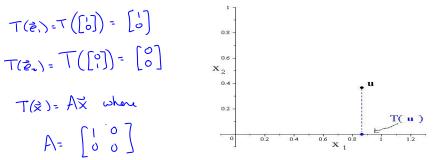
イロト イヨト イヨト イヨト

Example¹

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the projection transformation that projects each point onto the x_1 axis

$$T\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right) = \left[\begin{array}{c} x_1\\ 0\end{array}\right].$$

Find the standard matrix for T.



¹See pages 77–80 in Lay for matrices associated with other geometric tranformation on \mathbb{R}^2

The Property **Onto**

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of T is all of the codomain.

If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is an **onto** transformation, then the equation

 $T(\mathbf{x}) = \mathbf{b}$

is always solvable. If T is a linear transformation with standard matrix A, then this is equivalent to saying $A\mathbf{x} = \mathbf{b}$ is always consistent.

> イロト 不得 トイヨト イヨト ヨー ろくの February 12, 2022

Determine if the transformation is onto.

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x}.$$

be need to determine whether each vector \vec{b} in
 \mathbb{R}^{n} is an out put for T .
Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$, it's 2×3 . So, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$
het $\vec{b} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$ in \mathbb{R}^{2} . Is $A \approx = \vec{b}$ always
consistent? The equation has augmented

-

matix

メロト メポト メヨト メヨト 二日

・ロト・西ト・ヨト・ヨー うへの

The Property **One to One**

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a **one to one** transformation, then the equation $T(\mathbf{x}) = T(\mathbf{y})$ is only true when $\mathbf{x} = \mathbf{y}$.

> February 12, 2022