February 14 Math 3260 sec. 52 Spring 2022

Section 1.9: The Matrix for a Linear Transformation

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation provided for every vector \mathbf{u} and \mathbf{v} in \mathbb{R}^n and every scalar c

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}),$$
 and $T(c\mathbf{u}) = cT(\mathbf{u}).$

Remark: We know that a mapping defined by matrix multiplication $\mathbf{x} \mapsto A\mathbf{x}$ is a linear transformation. In fact, every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be realized in terms of matrix multiplication.

Elementary Vectors

Elementary Vectors: We'll use the notation **e**_i to denote the vector in \mathbb{R}^n having a 1 in the i^{th} position and zero everywhere else.

e.g. in \mathbb{R}^2 the elementary vectors are

$$\boldsymbol{e}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{e}_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right],$$

in \mathbb{R}^3 they would be

$$\mathbf{e}_1 = \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight], \quad \mathbf{e}_2 = \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight], \quad \text{and} \quad \mathbf{e}_3 = \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight]$$

and so forth.

Note that in \mathbb{R}^n , the elementary vectors are the columns of the identity

2/27

Example: Matrix of Linear Transformation

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ be a linear transformation, and suppose

$$T(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 4 \end{bmatrix}, \quad \text{and} \quad T(\mathbf{e}_2) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 6 \end{bmatrix}.$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^2 we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

to find a matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^2$.

$$T(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 4 \end{bmatrix}, \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 6 \end{bmatrix}$$
Let $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$ be arbitrary in \mathbf{R}^2

$$T(\dot{x}) = T(x_1 \dot{e}_1 + x_2 \dot{e}_2)$$

$$= T(x_1 \dot{e}_1) + T(x_2 \dot{e}_2)$$

$$= \chi_1 T(\dot{e}_1) + \chi_2 T(\ddot{e}_2)$$

$$= \chi_{1} \begin{bmatrix} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} + \chi_{2} \begin{bmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}$$

Hence
$$T(\dot{x}) = A\dot{x}$$
 if $A = \begin{bmatrix} 0 & 1 \\ -2 & -1 \\ 4 & 6 \end{bmatrix}$.

Notice that
$$A = \left[T(\vec{e}_i) \ T(\vec{e}_z) \right]$$

5/27

Theorem

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the j^{th} column of the matrix A is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j^{th} column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

The matrix A is called the **standard matrix** for the linear transformation T.

Example

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the scaling trasformation (contraction or dilation for r>0) defined by

$$T(\mathbf{x}) = r\mathbf{x}$$
, for positive scalar r .

Find the standard matrix for T.

Calling the matrix
$$A_{J}$$
 $A_{J} = [T(\vec{e}_{J}), T(\vec{e}_{Z})]$

$$\vec{e}_{l} = [0], T(\vec{e}_{l}) = (\vec{e}_{l} = ([0]) = [0])$$

$$\vec{e}_{z} = [0], T(\vec{e}_{z}) = (\vec{e}_{z} = ([0]) = [0])$$
Hence $A_{J} = [0]$

Check:
$$\vec{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 is any vector in \mathbb{R}^2

Then
$$A\vec{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} CX_1 + OX_2 \\ OX_1 + CX_2 \end{bmatrix} = \begin{bmatrix} CX_1 \\ CX_2 \end{bmatrix}$$

$$= \left(\begin{bmatrix} x^{r} \\ X^{r} \end{bmatrix} = \left(x \right) = \left(x \right)$$

Example: Shear Transformation

Find the standard matrix for the linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$ that maps \mathbf{e}_2 to $\mathbf{e}_2 - \frac{1}{2}\mathbf{e}_1$ and leaves \mathbf{e}_1 unchanged.

Let's call this transformation
$$T$$
.

$$T(\vec{e}_1) = \vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, T(\vec{e}_2) = \vec{e}_2 - \frac{1}{2}\vec{e}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$$
Calling the matrix A ,
$$A = \begin{bmatrix} 1 & -1/2 \\ 0 & 1 \end{bmatrix}$$

Example: Shear Transformation

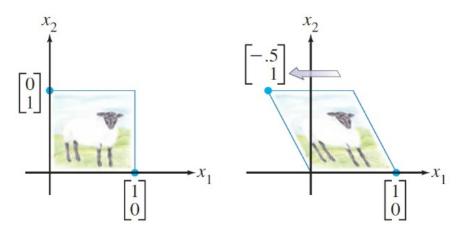
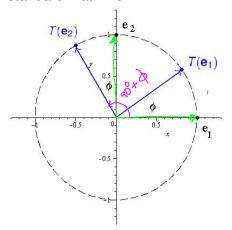


Figure: The unit square under the transformation $\mathbf{x}\mapsto \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}\mathbf{x}$.

Example: Rotation

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ . Find the standard matrix for T.



Using some basic trigonometry, the points on the unit circle

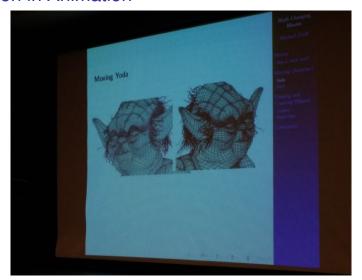
$$T(\mathbf{e}_1) = (\cos \phi, \sin \phi)$$

$$T(\mathbf{e}_2) = (\cos(90^\circ + \phi), \sin(90^\circ + \phi))$$

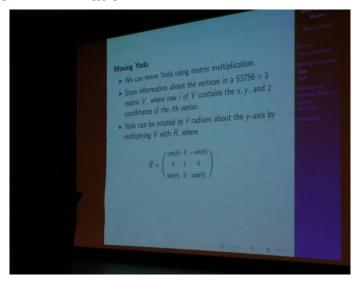
$$= (-\sin \phi, \cos \phi)$$

So
$$A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$
.

Rotation in Animation



Rotation in Animation



Example¹

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the projection transformation that projects each point onto the x_1 axis

$$T\left(\left[\begin{array}{c} X_1 \\ X_2 \end{array}\right]\right) = \left[\begin{array}{c} X_1 \\ 0 \end{array}\right].$$

Find the standard matrix for T.

$$T(\vec{e}_{i}) = T(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$T(\vec{e}_{i}) = T(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{1}$$

February 12, 2022

14/27

¹See pages 77–80 in Lay for matrices associated with other geometric

The Property Onto

Definition: A mapping $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of T is all of the codomain.

If $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is an **onto** transformation, then the equation

$$T(\mathbf{x}) = \mathbf{b}$$

is always solvable. If T is a linear transformation with standard matrix A, then this is equivalent to saying $A\mathbf{x} = \mathbf{b}$ is always consistent.

Determine if the transformation is onto.

$$T(\mathbf{x}) = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 3 \end{array} \right] \mathbf{x}.$$

we can state the question as "is the equation $A\vec{x} = \vec{b}$ always consist $y \neq 0$ " Note that A= [0 2] is 2x 3, so $T: \mathbb{R}^3 \to \mathbb{R}^2$. Let $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ be ony Vector in TR.. The augmented matrix for $A\vec{x} = \vec{b}$ is $\begin{bmatrix} 1 & 0 & 2 & b_1 \\ 0 & 1 & 3 & b_2 \end{bmatrix}$.

This is an ref. The 4th column is not a pivot column for any choice of board by.

The linear system $A\vec{x} = \vec{b}$ is always consistent. Hence T is onto.

The Property One to One

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

If $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a **one to one** transformation, then the equation

$$T(\mathbf{x}) = T(\mathbf{y})$$
 is only true when $\mathbf{x} = \mathbf{y}$.