February 14 Math 3260 sec. 52 Spring 2024

Section 2.1: Matrix Operations

Recall the convenient notaton for a matrix A

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

Here each column is a vector \mathbf{a}_{j} in \mathbb{R}^{m}. We'll use the additional convenient notation to refer to A by entries

$$
A=\left[a_{i j}\right] .
$$

$a_{i j}$ is the entry in row i and column j.

Main Diagonal \& Diagonal Matrices

The main diagonal of a matrix consist of the entries $a_{i j}$.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{22} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]
$$

A diagonal matrix is a square matrix, $m=n$, for which all entries not on the main diagonal are zero.

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Matrix Equality

Matrix Equality:

Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal provided they are of the same size, $m \times n$, and

$$
a_{i j}=b_{i j} \quad \text { for every } i=1, \ldots, m \quad \text { and } \quad j=1, \ldots, n .
$$

In this case, we can write

$$
A=B .
$$

Scalar Multiplication \& Matrix Addition

We have two initial operations we can perform on matrices.

Scalar Multiplication:

For $m \times n$ matrix $A=\left[a_{i j}\right]$ and scalar c

$$
c A=\left[c a_{i j}\right] .
$$

Matrix Addition:

For $m \times n$ matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$

$$
A+B=\left[a_{i j}+b_{i j}\right]
$$

Note: The sum of two matrices is only defined if they are of the same size.

Example

Consider the following matrices.

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & 4 \\
7 & 0
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

Evaluate each expression or state why it fails to exist.
(a) $3 B=\left[\begin{array}{ll}3(-2) & 3(4) \\ 3(7) & 3(9)\end{array}\right]=\left[\begin{array}{cc}-6 & 12 \\ 21 & 0\end{array}\right]$

Evaluate each expression or state why it fails to exist.

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & 4 \\
7 & 0
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

(b) $A+B=\left[\begin{array}{cc}1+(-2) & -3+4 \\ -2+7 & 2+0\end{array}\right]=\left[\begin{array}{cc}-1 & 1 \\ 5 & 2\end{array}\right]$
(c) $\mathrm{C}+\mathrm{A}$

This is undefined C is 2×3

$$
\text { and } A \text { is } 2 \times 2 \text {. }
$$

Zero Matrix

The $m \times n$ zero matrix has a zero in each entry. We'll denote this matrix as O (or $O_{m, n}$ if the size is not clear from the context).

Theorem: Algebraic Properties of Scalar Mult. and Matrix Add.

Let A, B, and C be matrices of the same size and r and s be scalars. Then
(i) $A+B=B+A$
(v) $r(A+B)=r A+r B$
(ii) $(A+B)+C=A+(B+C)$
(vi) $(r+s) A=r A+s A$
(iii) $A+O=A$
(iv) ${ }^{a} A+(-A)=O$
${ }^{2}$ The term $-A$ denotes $(-1) A$.

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "multiply vectors in \mathbb{R}^{n} by $A^{\prime \prime}$ defines a linear transformation (from \mathbb{R}^{n} to \mathbb{R}^{m}).

We wish to define matrix multiplication in such a way as to correspond to function composition. Thus if

$$
S(\mathbf{x})=B \mathbf{x}, \quad \text { and } \quad T(\mathbf{v})=A \mathbf{v}
$$

then

$$
(T \circ S)(\mathbf{x})=T(S(\mathbf{x}))=A(B \mathbf{x})=(A B) \mathbf{x}
$$

Matrix Multiplication

$\mathrm{x} \mapsto B \mathrm{x}$
 $B \mathbf{x} \mapsto A(B \mathbf{x})$

$B \sim n \times p \quad A \sim m \times n$

$$
A B \sim m \times p
$$

Figure: \mathbf{x} is mapped from \mathbb{R}^{p} to $B \mathbf{x}$ in \mathbb{R}^{n}. Then $B \mathbf{x}$ in \mathbb{R}^{n} is mapped to $A B \mathbf{x}$ in \mathbb{R}^{m}. The composition is a mapping $\mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$. This is only defined if the number of rows of the matrix B is equal to the number of columns of the matrix A.

Matrix Multiplication

$$
\begin{aligned}
S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} & \Longrightarrow B \sim n \times p \\
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} & \Longrightarrow A \sim m \times n \\
T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} & \Longrightarrow A B \sim m \times p
\end{aligned}
$$

$$
B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \Longrightarrow
$$

$$
A(B \mathbf{x})=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p} \Longrightarrow
$$

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

The $j^{\text {th }}$ column of $A B$ is A times the $j^{\text {th }}$ column of B.

Product of Matrices

The product $A B$ is only defined if the number of columns of A (the left matrix) matches the number of rows of B (the right matrix).

AB

$$
m \times n n \times p
$$

$$
m \times p
$$

Example

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

Compute the product $A B$ where

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

$$
\begin{array}{ll}
\underset{2 \times 2 \sqrt{2 \times 3}}{A B} & \vec{b}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{c}
0 \\
-4
\end{array}\right], \vec{b}_{3}=\left[\begin{array}{l}
2 \\
6
\end{array}\right] \\
2 \times 3 & A \vec{b}_{1}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+1\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2
\end{array}\right] \\
A \vec{b}_{2} & =\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right]\left[\begin{array}{c}
0 \\
-4
\end{array}\right]=0\left[\begin{array}{c}
1 \\
-2
\end{array}\right]-4\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
12 \\
-8
\end{array}\right] \\
A \vec{b}_{3} & =\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+6\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-16 \\
8
\end{array}\right]
\end{array}
$$

February 12, $2024 \quad 12 / 26$

$$
A B=\left[\begin{array}{ccc}
-1 & 12 & -16 \\
-2 & -8 & 8
\end{array}\right]
$$

Row-Column Rule for Computing the Matrix Product

 If $A B=C=\left[c_{i j}\right]$, then$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

(The $i j^{\text {th }}$ entry of the product is the dot product of $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.)

For example, if A is 2×2 and B is 2×3, then $n=2$. The entry in row 2 column 3 of $A B$ would be

$$
c_{23}=\sum_{k=1}^{2} a_{2 k} b_{k 3}=a_{21} b_{13}+a_{22} b_{23} .
$$

Example
For example: $\quad A B=\left[\begin{array}{cc}1 & -3 \\ -2 & 2\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 2 \\ 1 & -4 & 6\end{array}\right]=$

$$
\begin{array}{ll}
\begin{array}{c}
A \\
2 \times 2 \\
2 \times 3 \\
\downarrow \\
2 \times 3
\end{array} & {\left[\begin{array}{ccc}
-1 & 12 & -16 \\
-2 & -8 & 8
\end{array}\right]} \\
& A B=\left[\begin{array}{ccc}
-1 & 12 & -16 \\
-2 & -3 & 8
\end{array}\right]
\end{array}
$$

Theorem: Properties of the Matrix Product

Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then
(i) $A(B C)=(A B) C$
(ii) $A(B+C)=A B+A C$
(iii) $(B+C) A=B A+C A$
(iv) $r(A B)=(r A) B=A(r B)$, and
(v) $I_{m} A=A=A I_{n}$

Critical Remarks

Caveats

1. Matrix multiplication does not commute! That is, in general $A B \neq B A$. In fact, the validity of $A B$ does not even imply that $B A$ is defined.
2. The zero product property does not hold! That is, if $A B=O$, one cannot conclude that one of the matrices A or B is a zero matrix.
3. There is No cancelation law. That is, $A B=C B$ does not imply that A and C are equal.

Compute $A B$ and $B A$ where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$.

$$
\begin{aligned}
& \begin{array}{cc}
A & B \\
2 x^{2} & 2 x^{2} \\
\downarrow \\
2 x^{2}
\end{array} \quad A B=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
-3 & 6
\end{array}\right] \\
& B A \\
& B A=\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 11 \\
-1 & 4
\end{array}\right] \\
& \begin{array}{c}
2 \times 2 \\
\underset{2 \times 2}{2} \\
\\
2 \times 2
\end{array} \\
& A B \neq B A
\end{aligned}
$$

Compute the products $A B, C B$, and $B B$ where $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, $B=\left[\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right]$, and $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Matrix Powers

Positive Integer Powers:

If A is square-meaning A is an $n \times n$ matrix for some $n \geq 2$, then the product $A A$ is defined. For positive integer k, we'll define

$$
A^{k}=A A^{k-1}
$$

Zero Power: We define $A^{0}=I_{n}$, where I_{n} is the $n \times n$ identity matrix.

Transpose

Definition: Matrix Transpose

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The transpose of A is the $n \times m$ matrix denoted and defined by

$$
A^{T}=\left[a_{j i}\right]
$$

For example, if

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \quad \text { then } A^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

Compute A^{T}, B^{T}, the transpose of the product $(A B)^{T}$, and the product $B^{T} A^{T}$.

We already computed $A B=\left[\begin{array}{ccc}-1 & 12 & -16 \\ -2 & -8 & 8\end{array}\right]$ in a previous example.

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{cc}
1 & -2 \\
-3 & 2
\end{array}\right] \quad B^{\top}=\left[\begin{array}{cc}
2 & 1 \\
0 & -4 \\
2 & 6
\end{array}\right](A B)^{\top}=\left[\begin{array}{cc}
-1 & -2 \\
12 & -9 \\
-16 & 9
\end{array}\right] \\
B^{\top} A^{\top} \\
3 \times 2{ }^{2}{ }^{2} \times 2 \\
3 \times 2
\end{gathered}
$$

$$
B^{\top} A^{\top}=\left[\begin{array}{cc}
2 & 1 \\
0 & -4 \\
2 & 6
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
12 & -8 \\
-16 & 9
\end{array}\right]
$$

Properties-Matrix Transposition

Theorem

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(A+B)^{T}=A^{T}+B^{T}$
(iii) $(r A)^{T}=r A^{T}$
$(A B C)^{\top}=C^{\top} B^{\top} A^{\top}$
(iv) $(A B)^{T}=B^{T} A^{T}$

