February 15 Math 2306 sec. 51 Spring 2023

Section 6: Linear Equations Theory and Terminology

We are considering $n^{\text {th }}$ order, linear, homogeneous equations ${ }^{1}$.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

And we had stated the principle of superposition that says that if we have a collection of solutions, $y_{1}, y_{2}, \ldots, y_{k}$ to this homogenous ODE, then any function of the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution. We called this form a linear combination.

[^0]
Linear Dependence/Independence

If we have a set of functions, $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$, we can form a linear combination that is equal to zero for all x in some interval.

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

Linear Independence

If the ONLY way to make this true is for $c_{1}=c_{2}=\cdots=c_{n}=$ 0 (i.e., all c's must be zero) then the set of functions Linearly Independent.

Linear Dependence

If it's possible to make this true with at least one of the c's being nonzero, then the set of functions Linearly Dependent.

Examples

The set of functions $\{\sin x, \cos x\}$ are linearly independent on $(-\infty, \infty)$.

The set of functions $\left\{x^{2}, 4 x, x-x^{2}\right\}$ are linearly dependent on $(-\infty, \infty)$.

$$
1 x^{2}-\frac{1}{4}(4 x)+1\left(x-x^{2}\right)=0
$$

I claimed that there would be a test that could be used to determine whether a set of functions was linearly dependent or independent. The test involves this thing called a Wronskian.

Definition of Wronskian

Definition: Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval l. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

We computed this one last time.

$$
W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|=-1
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

3 functions $\Rightarrow 3 \times 3$ matrix.

$$
\begin{aligned}
& W\left(f_{1}, f_{2}, f_{3}\right)(x)=\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right| \\
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}(-8-0)-4 x(-4 x-2(1-2 x))+\left(x-x^{2}\right)(0-8) \\
& =-8 x^{2}-4 x(-4 x-2+4 x)-8 x+8 x^{2} \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \\
& \quad W\left(f_{1}, f_{2}, f_{3}\right)(x)=0
\end{aligned}
$$

Theorem (a test for linear independence)

Theorem

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

Remark 1: We can compute the Wronskian W as a test:
$W=0 \Longrightarrow$ dependent or $W \neq 0 \Longrightarrow$ independent

Remark 2: If the functions $y_{1}, y_{2}, \ldots, y_{n}$ all solve the same linear, homogeneous ODE on some interval I, then their Wronskian is either everywhere zero or nowhere zero on I.

Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

We con use the Wronskion.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right| \\
& =e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-2 e^{-x}-e^{-x}=-3 e^{-x} \\
& w\left(y_{1}, y_{2}\right)(x)=-3 e^{-x} \neq 0
\end{aligned}
$$

The functions are linearly independent.

Fundamental Solution Set

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.
Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.

General Solution Homogeneous ODE

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty)
$$

and determine the general solution.
We have to show that we have two, linearly independent solutions.

Let's verity that they are solutions.

$$
\begin{array}{rll}
y_{1}=x^{2} & x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1} & \stackrel{?}{=} 0 \\
y_{1}^{\prime}=2 x & x^{2}(2)-4 x(2 x)+6\left(x^{2}\right) & \stackrel{?}{=} 0 \\
y_{1}^{\prime \prime}=2 & y_{1} & \text { is o } \\
& 2 x^{2}-8 x^{2}+6 x^{2} & \stackrel{ }{=} 0 \\
& 0 & \text { solution } \\
& 0 & =0
\end{array}
$$

$$
\begin{array}{rl}
y_{2}=x^{3} & x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2} \stackrel{?}{=} 0 \\
y_{2}^{\prime}=3 x^{2} & x^{2}(6 x)-4 x\left(3 x^{2}\right)+6\left(x^{3}\right) \\
\stackrel{?}{=} 0 & y_{2} \\
y_{2}^{\prime \prime}=6 x & 6 x^{3}-12 x^{3}+6 x^{3} \\
& =0
\end{array}
$$

we hove solutions. Let's show that they are. linearly independent. Using the Wronskian,

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right| \\
& =x^{2}\left(3 x^{2}\right)-2 x\left(x^{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
=3 x^{4}-2 x^{4}=x^{4} \\
w\left(y_{1}, y_{2}\right)(x)=x^{4} \neq 0
\end{gathered}
$$

Hence y_{1} and y_{2} are linearly independent! we have a fundamental solution set.

The general solution $y=c_{1} y_{1}+c_{2} y_{2}$

$$
y=c_{1} x^{2}+c_{2} x^{3}
$$

Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

General Solution of Nonhomogeneous Equation

General Solution Nonhomogeneous ODE

Let y_{p} be any solution of the nonhomogeneous equation, and let $y_{1}, y_{2}, \ldots, y_{n}$ be any fundamental solution set of the associated homogeneous equation.
Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

Note the form of the solution $y_{c}+y_{p}$!
(complementary plus particular)

Superposition Principle (for nonhomogeneous eqns.)

Consider the nonhomogeneous equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{1}(x)+g_{2}(x) \tag{1}
\end{equation*}
$$

Theorem: If $y_{p_{1}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)
$$

and $y_{p_{2}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{2}(x)
$$

then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

is a particular solution for the nonhomogeneous equation (1).

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$ We will construct the general solution by considering sub-problems.
(a) Part 1 Verify that

$$
\begin{aligned}
& y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36 . \\
& y_{p_{1}}{ }^{\prime}=0 \\
& y_{p_{1}}^{\prime \prime}=0 \quad x^{2} y_{p_{1}^{\prime \prime}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}} \quad \stackrel{?}{=} 36 \\
& x^{2}(0)-4 x(0)+6(6) \stackrel{?}{=} 36 \\
& 36=36
\end{aligned}
$$

y_{p} is a solution

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Part 2 Verify that

$$
y_{p_{2}}=-7 x \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x
$$

$$
\begin{aligned}
& y_{p_{2}}^{\prime}=-7 \\
& y_{p_{2}}^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{aligned}
x^{2} y p_{2}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y p_{2} & \stackrel{?}{=}-14 x \\
x^{2}(0)-4 x(-7)+6(-7 x) & \stackrel{?}{=}-14 x \\
28 x-42 x & \stackrel{?}{=}-14 x
\end{aligned}
$$

$y_{p z}$ is a solution

$$
-14 x=-14 x
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Part 3 We already know that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

$$
\begin{array}{ll}
y=y_{c}+y_{p} & y_{p}=y_{p}+y_{p} \\
y_{c}=c_{1} y_{1}+c_{2} y_{2} & y_{p}=6-7 x \\
y_{c}=c_{1} x^{2}+c_{2} x^{3} &
\end{array}
$$

The severd solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=5
$$

The general solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Find c_{1}, c_{2}.

$$
\begin{gathered}
y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7 \\
y(1)=0=c_{1}(1)^{2}+c_{2}(1)^{3}+6-7(1) \\
c_{1}+c_{2}=1
\end{gathered}
$$

$$
\begin{aligned}
& y^{\prime}(1)=5= 2 c_{1}(1)+3 c_{2}(1)^{2}-7 \\
& 2 c_{1}+3 c_{2}=12 \\
& c_{1}+c_{2}=1 \\
&-\left(\frac{2 c_{1}+3 c_{2}=12}{2 c_{1}+2 c_{2}=2}\right) \quad c_{2}=10 \\
& \text { The solution to the } c_{1}=1-c_{2}=-9 \\
& y=-9 x^{2}+10 x^{3}+6-7 x
\end{aligned}
$$

[^0]: ${ }^{1}$ Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.

