February 16 Math 3260 sec. 51 Spring 2022

Section 1.9: The Matrix for a Linear Transformation
Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Moreover, the $j^{\text {th }}$ column of the matrix A is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the $j^{\text {th }}$ column of the $n \times n$ identity matrix I_{n}. That is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

The matrix A is called the standard matrix for the linear transformation T.

The Property Onto

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}-i.e. if the range of T is all of the codomain.

If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is an onto transformation, then the equation

$$
T(\mathbf{x})=\mathbf{b}
$$

is always solvable. If T is a linear transformation with standard matrix A, then this is equivalent to saying $A \mathbf{x}=\mathbf{b}$ is always consistent.

The Property One to One

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a one to one transformation, then the equation

$$
T(\mathbf{x})=T(\mathbf{y}) \text { is only true when } \quad \mathbf{x}=\mathbf{y} .
$$

Remark: In terms of the standard matrix A, being one-to-one means that
if $\mathbf{A} \mathbf{x}=\mathbf{b}$ is consistent, then there is exactly one solution.

Determine if the transformation is one to one.

$$
T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x} .
$$

Call the matrix $A, A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right]$.
If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ then $n=3$ and $m=2$.
If $A \vec{x}=\breve{b}$ is consistent, is there exactly one solution? If so, T is one to one.

Consida $A \vec{x}=\vec{b}$ with $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.
The aug minted matrix would be

$$
\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=b_{1}-2 x_{3} \\
& x_{2}=b_{2}-3 x_{3} \\
& x_{3} \text { is free }
\end{aligned}
$$

There are infinitely many solutions since x_{3} is free.

Hence T is not one to one.
Note: $\vec{x}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ 0\end{array}\right]$ and $\vec{x}=\left[\begin{array}{c}b_{1}-2 \\ b_{2}-3 \\ 1\end{array}\right]$ ane to different solutions to $A \vec{x}=\vec{b}$.

Two Distinct Properties

$$
T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x}
$$

Remark: We saw that this linear transformation

- IS onto, but
- it IS NOT one to one.

This illustrates that, in general, these two properties are distinct. A transformation could be onto, one-to-one, neither, or both.

Some Theorems on Onto and One to One

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then
(i) T is onto if and only if the columns of A span \mathbb{R}^{m}, and
(ii) T is one to one if and only if the columns of A are linearly independent.

Example
Let $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{1}-x_{2}, 3 x_{2}\right)$. Verify that T is one to one. Is T onto?

Note that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. Let's find the
Standard matrix $A . \quad A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]$

$$
\begin{aligned}
& \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=(1,0) \quad T\left(\vec{e}_{1}\right)=T(1,0)=(1,2.1-0,3.0) \\
&=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \\
& \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=(0,1) \quad T\left(\vec{e}_{2}\right)=T(0,1)=(0,2.0-1,3.1)
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right]
$$

To show that T is one to one, we con show that $T(\vec{x})=\overrightarrow{0}$ has only the triune solution.

$$
T(\vec{x})=\overrightarrow{0} \Rightarrow A \vec{x}=\overrightarrow{0}
$$

The augmented motrix is

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & -1 & 0 \\
0 & 3 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

February 16, 2022 9/38

$$
\Rightarrow \begin{aligned}
& x_{1}=0 \\
& x_{2}=0
\end{aligned}
$$

$$
x_{2}=0
$$

there one no free variables.
Pence $T(\vec{x})=\overrightarrow{0}$ has on'y the trivial solution. This shows that T is one to one.

To determine if T is onto, we can determine if $A \vec{x}=\vec{L}_{0}$ is consistent for all \vec{b} in \mathbb{R}^{3}.

Luting $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$

The aug moated matrix for $A \vec{x}=\vec{b}$ is

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
2 & -1 & b_{2} \\
0 & 3 & b_{3}
\end{array}\right] \xrightarrow{\text { rel }}\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & 2 b_{1}-b_{2} \\
0 & 0 & 6 b_{1}-2 b_{2}-b_{3}
\end{array}\right]
$$

The range ally contains vectors \vec{b}
for which $6 b_{1}-2 b_{2}-b_{3}=0$.
$A \vec{x}=\vec{b}$ is not always consistent, hence T is not onto.

