February 16 Math 3260 sec. 52 Spring 2022

Section 1.9: The Matrix for a Linear Transformation

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the j^{th} column of the matrix A is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j^{th} column of the $n \times n$ identity matrix I_n . That is,

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}.$$

February 16, 2022

1/38

The matrix A is called the **standard matrix** for the linear transformation T.

The Property **Onto**

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of T is all of the codomain.

If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is an **onto** transformation, then the equation

 $T(\mathbf{x}) = \mathbf{b}$

is always solvable. If T is a linear transformation with standard matrix A, then this is equivalent to saying $A\mathbf{x} = \mathbf{b}$ is always consistent.

> February 16, 2022

2/38

The Property One to One

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a **one to one** transformation, then the equation

 $T(\mathbf{x}) = T(\mathbf{y})$ is only true when $\mathbf{x} = \mathbf{y}$.

Remark: In terms of the standard matrix *A*, being one-to-one means that

if $A\mathbf{x} = \mathbf{b}$ is consistent, then there is exactly one solution.

イロト 不得 トイヨト イヨト ヨー ろくの

Determine if the transformation is one to one.

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x}.$$

Let's call the natrix A. We can consider
an equation $A\vec{x} = \vec{b}$ that is consistent.
If there is exactly one solution, then T
is one to one. If $T: TR^m \Rightarrow TR^m$, then
 $n=3$ and $m=2$. Let $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, $A\vec{x} = \vec{b}$
has augmented natrix $\begin{bmatrix} 1 & 0 & 2 & b_1 \\ 0 & 1 & 3 & b_2 \end{bmatrix}$

February 16, 2022 4/38

This is an rref. The solutions satisfy

 $X_1 = b_1 - 2X_3$ $X_2 = b_2 - 3X_3$ \Rightarrow there are infinitely many X_3 is free solutions.

Hence T is not one to one.

February 16, 2022 5/38

イロト イポト イヨト イヨト 二日

Two Distinct Properties

$$T(\mathbf{x}) = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 1 & 3 \end{array} \right] \mathbf{x}.$$

Remark: We saw that this linear transformation

- IS onto, but
- ▶ it IS NOT one to one.

This illustrates that, in general, these two properties are distinct. A transformation could be onto, one-to-one, neither, or both.

Some Theorems on Onto and One to One

Theorem: Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then *T* is one to one if and only if the homogeneous equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem: Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation, and let *A* be the standard matrix for *T*. Then

- (i) T is onto if and only if the columns of A span \mathbb{R}^m , and
- (ii) T is one to one if and only if the columns of A are linearly independent.

Example

Let $T(x_1, x_2) = (x_1, 2x_1 - x_2, 3x_2)$. Verify that T is one to one. Is T onto? Note that the input $\vec{X} = (X_1, X_2) = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$. The domain is TR2. The outputs look like (b, bz, bz). The codomain is TR3. T: R2 > R3. Calling the standard matrix A, A= [T(e,) T(ez)] $\vec{e}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1,0)$ $T(\vec{e}_{1}) = T(1,0) = (1,2\cdot 1 - 0,3\cdot 0)$ February 16, 2022 8/38

$$\vec{e}_{z} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (0,1) \quad T(\vec{e}_{z}) = T(0,1) = (0,20-1,3\cdot1) \\ = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$$
So $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 3 \end{bmatrix}$
To Show that T is one to one, we just have to show that $T(\vec{x}) = \vec{0}$ has only the trivial solution, i.e. $A\vec{x} = \vec{0}$ has only the trivial solution, i.e. $A\vec{x} = \vec{0}$ has only the trivial solution.
The augmented matrix for $A\vec{x} = \vec{0}$ is $(0 + \vec{0} + \vec{0}) = 0$ for $(0 + \vec{0}) = 0$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 3 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{x}} \begin{array}{l} X_{1} = 0 \\ X_{2} = 0 \end{array}$$
There are no free variables. A $\overrightarrow{X} = \overrightarrow{0}$ and
hence $T(\overrightarrow{X}) = \overrightarrow{0}$ have only the trivial
so lation. This shows that T is
one to one.
To determine if T is onto, we can
check whether $A\overrightarrow{X} = \overrightarrow{0}$ is always consistent,
For $\overrightarrow{b} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$, the any non-ted metric

February 16, 2022 10/38

-

$$\begin{array}{cccc} 1 & 0 & b_1 \\ 2 & -1 & b_2 \\ 0 & 3 & b_3 \end{array} \end{array}, \begin{array}{c} ret \\ \hline 0 & 1 & 2b_1 - b_2 \\ 0 & 0 & 6b_1 - 2b_2 - b_3 \end{array}$$

The system is only consistent when

$$Gb_1 - 2b_2 - b_3 = 0$$
. $T(X) = \overline{b}$ is not
always consistent, hence T is not
onto.

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣