## February 16 Math 3260 sec. 52 Spring 2024

Section 2.2: Inverse of a Matrix
Consider the scalar equation $a x=b$. Provided $a \neq 0$, we can solve this explicity

$$
x=a^{-1} b
$$

where $a^{-1}$ is the unique number such that $a a^{-1}=a^{-1} a=1$.

If $A$ is an $n \times n$ matrix, we seek an analog $A^{-1}$ that satisfies the condition

$$
A^{-1} A=A A^{-1}=I_{n} .
$$

- If such matrix $A^{-1}$ exists, we'll say that $A$ is nonsingular or invertible.
- Otherwise, we'll say that $A$ is singular.


## Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then $A$ is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then $A$ is singular.

## Determinant

The quantity $a d-b c$ is called the determinant of $A$ and may be denoted in several ways

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c .
$$

Find the inverse if possible
(a)

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right] \quad \operatorname{det}(A)=3(5)-(-1)(2)=17 \\
& \operatorname{det}(A) \neq 0 \Rightarrow A^{-1} \text { exists. } \\
& A^{-1}=\frac{1}{17}\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]
\end{aligned}
$$

Check:

$$
A^{-1} A=\frac{1}{17}\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right]=\frac{1}{17}\left[\begin{array}{cc}
17 & 0 \\
0 & 17
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Find the inverse if possible
(b) $A=\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right]$

$$
\operatorname{det}(A)=3(4)-6(2)=12-12-0
$$

$A$ is singular, a.k. a. not invertible

Theorem
Theorem
If $A$ is an invertible $n \times n$ matrix, then for each $\mathbf{b}$ in $\mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof: Suppose $A$ is invertible with inverse $A^{-1}$. Let $\vec{x}=i^{-1} \vec{b}$ and show that $\vec{x}$ solves $A \vec{x}=\vec{b}$.

$$
\vec{x}=A^{-1} \vec{b}
$$

Multipb each side on the left by $A$.

$$
A \vec{x}=A\left(A^{-1} \vec{b}\right)
$$

$$
\begin{aligned}
& A \vec{x}=\left(A A^{-1}\right) \vec{b} \\
& A \vec{x}=I \vec{b}=\vec{b} \Rightarrow A^{-1} \vec{b} \text { solves } A \vec{x}=\vec{b} .
\end{aligned}
$$

Now, consider $A \vec{x}=\vec{l}_{0}$. Multiply on the lett by $A^{-1}$ 。

$$
\begin{aligned}
& A \vec{x}=\vec{b} \\
& A^{-1} A \vec{x}=A^{-1} \vec{b} \\
& I \vec{x}=A^{-1} \vec{b} \\
& \vec{x}=A^{-1} \vec{b} \Rightarrow A^{-i} \vec{b} \text { is the only } \\
& \text { solution. }
\end{aligned}
$$

Hence $A^{-1} \vec{b}$ is the urigue solution to

$$
A \vec{x}=\vec{b}
$$

Example
Use a matrix inverse to solve the system.

$$
\begin{aligned}
& \begin{array}{l}
3 x_{1}+2 x_{2}=-1 \\
-x_{1}+5 x_{2}=4
\end{array} \quad \text { restate this as } A \vec{x}=\vec{b} . \\
& {\left[\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right], \quad \text { call }\left[\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right]=A \text { and }} \\
& {\left[\begin{array}{c}
-1 \\
4
\end{array}\right]=\vec{b} .}
\end{aligned}
$$

From before $A^{-1}=\frac{1}{17}\left[\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right]$.
By our theorem, $\vec{x}=A^{-1} \stackrel{\rightharpoonup}{b}$

$$
\begin{gathered}
\vec{x}=\frac{1}{17}\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
4
\end{array}\right]=\frac{1}{17}\left[\begin{array}{c}
-13 \\
11
\end{array}\right]=\left[\begin{array}{c}
-13 / 17 \\
11 / 17
\end{array}\right] \\
x_{1}=\frac{-13}{17}, \quad x_{2}=\frac{11}{17}
\end{gathered}
$$

## Inverses, Products, \& Transposes

## Theorem

(i) If $A$ is invertible, then $A^{-1}$ is also invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

(ii) If $A$ and $B$ are invertible $n \times n$ matrices, then the product $A B$ is also invertible ${ }^{a}$ with

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(iii) If $A$ is invertible, then so is $A^{T}$. Moreover

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$


${ }^{a}$ This can generalize to the product of $k$ invertible matrices.

## Elementary Matrices

## Definition:

An elementary matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples ${ }^{1}$ :

$$
\begin{array}{rl}
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] . \\
3 R_{2} \rightarrow R_{2} & 2 R_{1}+R_{3} \rightarrow R_{3} \quad R \Leftrightarrow R_{2}
\end{array}
$$

${ }^{1}$ There's nothing standard about the subscripts used here, although using $E$ to denote an elementary matrix is common.

## Action of Elementary Matrices

Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, and compute the following products

$$
\begin{array}{r}
E_{1} A, \\
{\left[\begin{array}{lll}
1 & E_{2}, & \text { and } \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
3 d & 3 e & 3 f \\
g & h & i
\end{array}\right] .}
\end{array}
$$

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& A= {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] } \\
& E_{2} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
&=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
z a+g & 2 b+h & 2 c+i
\end{array}\right] \\
& E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

$$
E_{3} A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
j & h & i
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
j & h & i
\end{array}\right]
$$

$$
E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## Remarks

## Remarks

1. Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
2. Each elementary matrix is invertible where the inverse undoes the row operation,
3. Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A .
$$

