February 16 Math 3260 sec. 52 Spring 2024

Section 2.2: Inverse of a Matrix

Consider the scalar equation ax = b. Provided $a \neq 0$, we can solve this explicity

$$x = a^{-1}b$$

where a^{-1} is the unique number such that $aa^{-1} = a^{-1}a = 1$.

If A is an $n \times n$ matrix, we seek an analog A^{-1} that satisfies the condition

$$A^{-1}A = AA^{-1} = I_n.$$

- If such matrix A⁻¹ exists, we'll say that A is nonsingular or invertible.
- Otherwise, we'll say that A is singular.

$2\times 2\ case$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is singular.

Determinant

The quantity ad-bc is called the **determinant** of A and may be denoted in several ways

$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Find the inverse if possible

(a) $A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$ det (A) = 3(5) - (-1)(2) = 17det $(A) \neq 0 \Rightarrow A^{-1}$ exists.

Chech: $A^{\dagger}A = \frac{1}{77} \begin{bmatrix} s & -2 \\ 1 & s \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & s \end{bmatrix} = \frac{1}{77} \begin{bmatrix} 17 & 0 \\ 0 & 17 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

February 14, 2024 3/39

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Find the inverse if possible

(b)
$$A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$$

det (A) = 3(4) - 6(2) = 12 - 12 = 0
A is singular, a.h.a. not invertible

February 14, 2024 4/39

2

イロト イヨト イヨト イヨト

Theorem

Theorem

If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof: Suppose A is invertible with inverse

$$A''$$
. Let $\vec{x} = j''\vec{b}$ and show that \vec{x} solves
 $A\vec{x} = \vec{b}$.
 $\vec{x} = \vec{A}'\vec{b}$
Multips each side on the left by A .
 $A\vec{x} = A(\vec{A}'\vec{b})$

February 14, 2024 5/39

A
$$\vec{x} = (A \vec{A}')\vec{b}$$

 $A\vec{x} = I\vec{b} = \vec{b} \Rightarrow \vec{A}'\vec{b}$ solves $A\vec{x} = \vec{b}$.
Now, consider $A\vec{x} = \vec{b}$. Multiply on the left by
 \vec{A}' .
 $A\vec{x} = \vec{b}$
 $\vec{A}'\vec{x} = \vec{A}'\vec{b}$
 $\vec{x} = \vec{A}'\vec{b}$
 $\vec{x} = \vec{A}'\vec{b} \Rightarrow \vec{A}'\vec{b}$ is the only
solution.
Hence $\vec{A}'\vec{b}$ is the unique solution to
 $\vec{A}\vec{x} = \vec{b}$.

February 14, 2024 6/39

Example

Use a matrix inverse to solve the system.

$$3x_{1} + 2x_{2} = -1$$

$$-x_{1} + 5x_{2} = 4$$

$$\begin{bmatrix}3 & 2\\-1 & 5\end{bmatrix} \begin{bmatrix}X_{1}\\X_{2}\end{bmatrix} = \begin{bmatrix}-1\\-4\end{bmatrix}, \quad \text{call } \begin{bmatrix}3 & 2\\-1 & 5\end{bmatrix} = A \text{ ad}$$

$$\begin{bmatrix}-1\\-1 & 5\end{bmatrix} \begin{bmatrix}X_{2}\\X_{2}\end{bmatrix} = \begin{bmatrix}-1\\-4\end{bmatrix}, \quad \text{call } \begin{bmatrix}-1\\-1 & 5\end{bmatrix} = A \text{ ad}$$

$$\begin{bmatrix}-1\\-1 & 5\end{bmatrix} = \begin{bmatrix}X_{2}\\-1 & 5\end{bmatrix} = \begin{bmatrix}-1\\-1 & 5\end{bmatrix}, \quad \text{call } \begin{bmatrix}-1\\-1 & 5\end{bmatrix} = A \text{ ad}$$

$$\begin{bmatrix}-1\\-1 & 5\end{bmatrix} = \begin{bmatrix}X_{2}\\-1 & 5\end{bmatrix}, \quad \text{call } \begin{bmatrix}3 & 2\\-1 & 5\end{bmatrix} = A \text{ ad}$$

$$\begin{bmatrix}-1\\-1 & 5\end{bmatrix} = \begin{bmatrix}X_{2}\\-1 & 5\end{bmatrix}, \quad \text{call } \begin{bmatrix}3 & 2\\-1 & 5\end{bmatrix} = A \text{ ad}$$

$$\begin{bmatrix}-1\\-1 & 5\end{bmatrix} = \begin{bmatrix}X_{2}\\-1 & 5\end{bmatrix}, \quad \text{call } \begin{bmatrix}3 & 2\\-1 & 5\end{bmatrix}, \quad \text{ca$$

- 2

イロト イヨト イヨト イヨト

$$\vec{X} : \frac{1}{17} \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \frac{1}{17} \begin{bmatrix} -13 \\ 11 \end{bmatrix} = \begin{bmatrix} -13/_{17} \\ 1'/_{17} \end{bmatrix}$$

 $X_1 = \frac{1}{17} , \quad X_2 = \frac{1}{17}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Inverses, Products, & Transposes

Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$\left(A^{-1}\right)^{-1}=A.$$

(ii) If *A* and *B* are invertible $n \times n$ matrices, then the product *AB* is also invertible^{*a*} with

$$(AB)^{-1} = B^{-1}A^{-1}.$$

(iii) If A is invertible, then so is A^{T} . Moreover

$$\left(\boldsymbol{A}^{T}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{T}.$$

^aThis can generalize to the product of k invertible matrices.

(ABCP) i À

Elementary Matrices

Definition:

An **elementary** matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples¹:

¹There's nothing standard about the subscripts used here, although using *E* to denote an elementary matrix is common.

Action of Elementary Matrices

Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, and compute the following products

 $E_{1}A, E_{2}A, \text{ and } E_{3}A.$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{bmatrix}$

February 14, 2024

11/39

$$E_1 = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

$$E_{2}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ d & e & f \\ za+g & zb+h & zc+i \end{bmatrix}$$

 $E_2 = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array} \right]$

February 14, 2024 12/39

2

ヘロト ヘ団ト ヘヨト ヘヨト

$$A = \left[\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

 $E_3 = \left[\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$

$$E_{3}A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ a & b & i \end{bmatrix}$$
$$= \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$$

February 14, 2024 13/39

<ロ> <四> <四> <三</td>

Remarks

Remarks

- 1. Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
- 2. Each elementary matrix is invertible where the inverse *undoes* the row operation,
- 3. Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A.$$

< ≣ > < ≣ >
February 14, 2024

14/39