February 18 Math 3260 sec. 51 Spring 2022

Section 2.1: Matrix Operations

Recall the convenient notation for a matrix A

$$A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Here each column is a vector \mathbf{a}_i in \mathbb{R}^m . We'll use the additional convenient notation to refer to A by entries

$$A=[a_{ij}].$$

 a_{ii} is the entry in **row** *i* and **column** *j*.

Main Diagonal & Diagonal Matrices

Main Diagonal: The main diagonal consist of the entries a_{ii} .

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}.
```

A **diagonal matrix** is a square matrix m = n for which all entries **not** on the main diagonal are zero.

$$\begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

Scalar Multiplication & Matrix Addition

Scalar Multiplication: For $m \times n$ matrix $A = [a_{ij}]$ and scalar c

$$cA = [ca_{ij}].$$

Matrix Addition: For $m \times n$ matrices $A = [a_{ij}]$ and $B = [b_{ij}]$

$$A+B=[a_{ij}+b_{ij}].$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality

Matrix Equality: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal provided they are of the same size, $m \times n$, and

$$a_{ij} = b_{ij}$$
 for every $i = 1, \dots, m$ and $j = 1, \dots, n$.

In this case, we can write

$$A = B$$
.

Example

$$A = \left[\begin{array}{cc} 1 & -3 \\ -2 & 2 \end{array} \right], \quad B = \left[\begin{array}{cc} -2 & 4 \\ 7 & 0 \end{array} \right], \quad \text{and} \quad C = \left[\begin{array}{cc} 2 & 0 & 2 \\ 1 & -4 & 6 \end{array} \right]$$

Evaluate each expression or state why it fails to exist.

(a)
$$3B = 3 \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix} = \begin{bmatrix} 3(-2) & 3(4) \\ 3(7) & 3(6) \end{bmatrix} = \begin{bmatrix} -6 & 12 \\ 21 & 0 \end{bmatrix}$$

$$A = \left[\begin{array}{cc} 1 & -3 \\ -2 & 2 \end{array} \right], \quad B = \left[\begin{array}{cc} -2 & 4 \\ 7 & 0 \end{array} \right], \quad \text{and} \quad C = \left[\begin{array}{cc} 2 & 0 & 2 \\ 1 & -4 & 6 \end{array} \right]$$

(b)
$$A + B = \begin{bmatrix} 1 + (-2) & -3 + 4 \\ -2 + 7 & 2 + 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & 2 \end{bmatrix}$$
 $2x^2$

6/25

Theorem: Properties

The $m \times n$ **zero matrix** has a zero in each entry. We'll denote this matrix as O (or $O_{m,n}$ if the size is not clear from the context).

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then

(i)
$$A + B = B + A$$

(iv)
$$r(A+B) = rA + rB$$

(ii)
$$(A + B) + C = A + (B + C)$$

$$(\mathsf{v})\;(r+s)\mathsf{A}=r\mathsf{A}+s\mathsf{A}$$

(iii)
$$A + O = A$$

(vi)
$$r(sA) = (rs)A$$

= $(sc)A = s(cA)$

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "multiply vectors **in** \mathbb{R}^n by A" defines a linear transformation (from \mathbb{R}^n to \mathbb{R}^m).

We wish to define matrix multiplication in such a way as to correspond to **function composition**. Thus if

$$S(\mathbf{x}) = B\mathbf{x}$$
, and $T(\mathbf{v}) = A\mathbf{v}$,

then

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}.$$

Matrix Multiplication

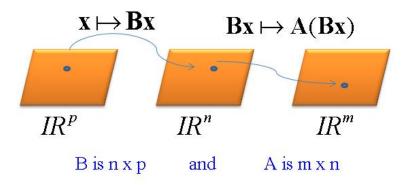


Figure: Composition requires the number of rows of *B* match the number of columns of *A*. Otherwise the product is **not defined**.

Matrix Multiplication

$$S: \mathbb{R}^p \longrightarrow \mathbb{R}^n \implies B \sim n \times p$$
 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m \implies A \sim m \times n$
 $T \circ S: \mathbb{R}^p \longrightarrow \mathbb{R}^m \implies AB \sim m \times p$

$$B\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_p \mathbf{b}_p \Longrightarrow$$

 $A(B\mathbf{x}) = x_1 A \mathbf{b}_1 + x_2 A \mathbf{b}_2 + \dots + x_p A \mathbf{b}_p \Longrightarrow$

$$AB = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_p]$$

The j^{th} column of AB is A times the j^{th} column of B.

Example

Compute the product AB where

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$

$$\vec{b}_{i} = \begin{bmatrix} 2 \\ i \end{bmatrix}, \vec{b}_{z} = \begin{bmatrix} 0 \\ -4 \end{bmatrix}, \vec{b}_{z} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$A\overline{b}_{1}^{2} = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$A\vec{b}_{z} = \begin{bmatrix} 1 & -3 \\ -z & z \end{bmatrix} \begin{bmatrix} 0 \\ -4 \end{bmatrix} = \begin{bmatrix} 12 \\ -8 \end{bmatrix}$$

$$A\overline{b}_{3} = \begin{bmatrix} 1 & -3 \\ -2 & z \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \begin{bmatrix} -16 \\ 8 \end{bmatrix}$$

Row-Column Rule for Computing the Matrix Product

If $AB = C = [c_{ij}]$, then

$$c_{ij}=\sum_{k=1}^{n}a_{ik}b_{kj}.$$

(The ij^{th} entry of the product is the *dot product* of i^{th} row of A with the j^{th} column of B.)

For example, if A is 2×2 and B is 2×3 , then n = 2. The entry in row 2 column 3 of AB would be

$$c_{23} = \sum_{k=1}^{2} a_{2k} b_{k3} = a_{21} b_{13} + a_{22} b_{23}.$$

Example

For example:
$$AB = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix} = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 7 \end{bmatrix}$$

