February 18 Math 3260 sec. 52 Spring 2022

Section 2.1: Matrix Operations

Recall the convenient notaton for a matrix A

$$A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Here each column is a vector \mathbf{a}_j in \mathbb{R}^m . We'll use the additional convenient notation to refer to A by entries

$$A=[a_{ij}].$$

 a_{ij} is the entry in **row** *i* and **column** *j*.

Main Diagonal & Diagonal Matrices

Main Diagonal: The main diagonal consist of the entries *a_{ii}*.

Γ	a 11	a ₁₂	a 13		a 1n]	
	a_{21}	a 22	a_{23}		a 2n	
	a_{31}	a_{32}	a 33		a 3n	
	:	:	:	·	:	
L	a_{m1}	a_{m2}	a_{m3}		amn	

A **diagonal matrix** is a square matrix m = n for which all entries **not** on the main diagonal are zero.

$$\begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

٠

February 16, 2022 2/25

Scalar Multiplication & Matrix Addition

Scalar Multiplication: For $m \times n$ matrix $A = [a_{ij}]$ and scalar *c*

 $cA = [ca_{ii}].$

Matrix Addition: For $m \times n$ matrices $A = [a_{ij}]$ and $B = [b_{ij}]$

$$A+B=[a_{ij}+b_{ij}].$$

イロト 不得 トイヨト イヨト ヨー ろくの February 16, 2022

3/25

The sum of two matrices is only defined if they are of the same size.

Matrix Equality

Matrix Equality: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal provided they are of the same size, $m \times n$, and

$$a_{ij} = b_{ij}$$
 for every $i = 1, \dots, m$ and $j = 1, \dots, n$.

In this case, we can write

$$A = B$$
.

Example

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

Evaluate each expression or state why it fails to exist. (a) $3B = 3 \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix} = \begin{bmatrix} 3(-2) & 3(4) \\ 3(7) & 3(0) \end{bmatrix}$ $= \begin{bmatrix} -6 & 12 \\ 2 & 0 \end{bmatrix}$

3 + 4 = +

 $A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$ $\begin{bmatrix} 1+(-7) & -3+4 \\ -2+7 & 2+0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & 2 \end{bmatrix}$ (b) A + B both orezx2 C is 2x3, A is 2x2, theore (c) C + Anot the some size, hence the sum is not defined.

February 16, 2022 6/25

<ロト <回 > < 回 > < 回 > < 回 > … 回

Theorem: Properties

The $m \times n$ **zero matrix** has a zero in each entry. We'll denote this matrix as O (or $O_{m,n}$ if the size is not clear from the context).

Theorem: Let *A*, *B*, and *C* be matrices of the same size and *r* and *s* be scalars. Then

(i)
$$A + B = B + A$$

(iv) $r(A + B) = rA + rB$
(ii) $(A + B) + C = A + (B + C)$
(v) $(r + s)A = rA + sA$
(iii) $A + O = A$
(vi) $r(sA) = (rs)A$
 $= (sc)A = s(cA)$

February 16, 2022 7/25

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "**multiply vectors** in \mathbb{R}^n by A" defines a linear transformation (from \mathbb{R}^n to \mathbb{R}^m).

We wish to define matrix multiplication in such a way as to correspond to **function composition**. Thus if

$$S(\mathbf{x}) = B\mathbf{x}$$
, and $T(\mathbf{v}) = A\mathbf{v}$,

then

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}.$$

February 16, 2022

Matrix Multiplication

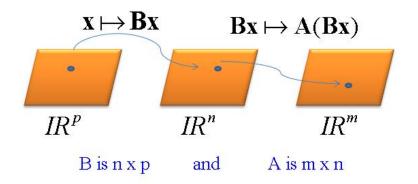


Figure: Composition requires the number of rows of *B* match the number of columns of *A*. Otherwise the product is **not defined**.

February 16, 2022

Matrix Multiplication

$$S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} \implies B \sim n \times p$$
$$T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \implies A \sim m \times n$$
$$T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} \implies AB \sim m \times p$$

$$B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p \Longrightarrow$$

$$A(B\mathbf{x}) = x_1A\mathbf{b}_1 + x_2A\mathbf{b}_2 + \dots + x_pA\mathbf{b}_p \Longrightarrow$$

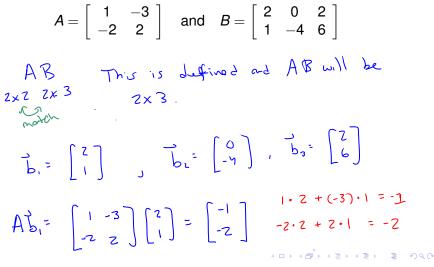
$$AB = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \dots \quad A\mathbf{b}_p]$$
The *jth* column of *AB* is *A* times the *jth* column of *B*.

2

イロト イヨト イヨト イヨト

Example

Compute the product AB where



February 16, 2022 11/25

$$A\overline{b}_{z} = \begin{bmatrix} 1 & -3 \\ -z & z \end{bmatrix} \begin{bmatrix} 0 \\ -4 \end{bmatrix} = \begin{bmatrix} 12 \\ -8 \end{bmatrix}$$
$$A\overline{b}_{3} = \begin{bmatrix} 1 & -3 \\ -z & z \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \begin{bmatrix} -16 \\ 8 \end{bmatrix}$$
$$S = \begin{bmatrix} -1 & 12 & -16 \\ -z & -8 & 8 \end{bmatrix}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで February 16, 2022 12/25

Row-Column Rule for Computing the Matrix Product If $AB = C = [c_{ij}]$, then

$$c_{ij}=\sum_{k=1}^{n}a_{ik}b_{kj}.$$

(The *ij*th entry of the product is the *dot* product of *i*th row of *A* with the j^{th} column of *B*.)

For example, if *A* is 2×2 and *B* is 2×3 , then n = 2. The entry in row 2 column 3 of *AB* would be

$$c_{23} = \sum_{k=1}^{2} a_{2k} b_{k3} = a_{21} b_{13} + a_{22} b_{23}.$$

February 16, 2022

Example

 $\begin{array}{ccc} A & B \\ z \times z & z \times 3 \end{array} \rightarrow 2 \times 3$

For example: $AB = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix} = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & -8 \end{bmatrix}$

$$C_{11} = 1 \cdot 2 + (-3) \cdot 1$$

$$C_{12} = 1 \cdot 0 + (-3) \cdot (-4)$$

$$C_{13} = 1 \cdot 2 + (-3) \cdot (6)$$

$$e^{\chi C}$$

AB 2× 2 2×3 (mala) AB 2×3

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

February 16, 2022