February 19 Math 3260 sec. 52 Spring 2024

Section 2.2: Inverse of a Matrix

Suppose A is an $n \times n$ matrix. We can ask whether there exists another $n \times n$ matrix A^{-1} with the property

$$
A^{-1} A=A A^{-1}=I_{n} .
$$

- If such matrix A^{-1} exists, we'll say that A is nonsingular or invertible.
- Otherwise, we'll say that A is singular or not invertible..

Theorem

Theorem
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If ${ }^{a} a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is singular.
${ }^{a}$ The number $a d-b c$ is called the determinant of A and can be written as $\operatorname{det}(A)$ or $|A|$.

Theorem

If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Inverses, Products, \& Transposes

Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

(ii) If A and B are invertible $n \times n$ matrices, then the product $A B$ is also invertible ${ }^{a}$ with

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(iii) If A is invertible, then so is A^{T}. Moreover

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

${ }^{a}$ This can generalize to the product of k invertible matrices.

Elementary Matrices \& Row Operations

Definition:

An elementary matrix is a square matrix obtained from the identity by performing one elementary row operation.

Remarks

1. Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
2. Each elementary matrix is invertible where the inverse undoes the row operation,
3. Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A .
$$

Matrix Inverses

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_{n}. Moreover, if

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A=I_{n}, \text { then } A=\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} I_{n} .
$$

That is,

$$
A^{-1}=\left[\left(E_{k} \cdots E_{2} E_{1}\right)^{-1}\right]^{-1}=E_{k} \cdots E_{2} E_{1} .
$$

The sequence of operations that reduces A to I_{n}, transforms I_{n} into A^{-1}.

Remark: This last observation-operations that take A to I_{n} also take I_{n} to A^{-1}-gives us a method for computing an inverse!

Algorithm for finding A^{-1}

Inverse Matrix Algorithm

To find the inverse of a given matrix A :

- Form the $n \times 2 n$ augmented matrix $\left[\begin{array}{ll}A & 1\end{array}\right]$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If $\operatorname{rref}(A)$ is I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- If $\operatorname{rref}(A)$ is $\operatorname{NOT} I$, then A is not invertible.

Remarks: We don't need to know ahead of time if A is invertible to use this algorithm. If A is singular, we can stop as soon as it's clear that $\operatorname{rref}(A) \neq 1$.

Examples: Find the Inverse if Possible
(a) $\left[\begin{array}{ccc}1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4\end{array}\right]=A$ Set up $[A I]$ and do cow ops.

$$
\begin{aligned}
& \left.\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
-4 & -7 & 3 & 0 & 1 & 0 \\
-2 & -6 & 4 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
4 R_{1}+R_{2} \rightarrow R_{2} \\
2 R_{1}+R_{3} \rightarrow R_{3} \\
4
\end{array}\right]-\frac{4}{4} 400 \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & -2 & 2 & 2 & 0 & 1
\end{array}\right] \quad \begin{array}{lccccc}
-4 & -7 & 3 & 0 & 1 & 0 \\
2 & 4 & -2 & 2 & 0 & 0 \\
-2 & -6 & 4 & 0 & 0 & 1
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 R_{2}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & 0 & 0 & 10 & 2 & 1
\end{array}\right] \quad \begin{array}{cccccc}
0 & 2 & -2 & 8 & 2 & 0 \\
0 & -2 & 2 & 2 & 0 & 1
\end{array}}
\end{aligned}
$$

A doesint hove a pivot position in its third row.

$$
\operatorname{rref}(A) \neq I
$$

A is singular (ie, not invertible)

Examples: Find the Inverse if Possible
(b)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & -1 & 1 \\
5 & 6 & 0
\end{array}\right]=A} \\
& {\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 & 1 & 0 \\
5 & 6 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& R_{1}+R_{2} \rightarrow R_{2} \\
& -5 R_{1}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{cccccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 1 & 1 & 0 \\
0 & -4 & -15 & -5 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
4 R_{2}+R_{3} \rightarrow R_{3} \\
{\left[\begin{array}{ccccccccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 4 & 1
\end{array}\right]} \\
-4 R_{3}+R_{2} \rightarrow R_{2} \\
-3 R_{3}+R_{1} \rightarrow R_{1}
\end{array} \begin{array}{llllllll}
0 & 4 & 16 & 4 & 4 & 0 \\
0 & 0 & -4 & 4 & -16 & -4 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 5 & -15 & -4 \\
0 & 0 & 1 & -1 & 4 & 1
\end{array}\right] \quad \begin{array}{ccccccc}
1 & 2 & 0 & 4 & -12 & -3 \\
1 & 0 & -3 & 3 & -12 & -3 \\
1 & 2 & 1 & 0 & 0
\end{array}\right]
$$

February 16, $2024 \quad 11 / 27$

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & -6 & 18 & 5 \\
0 & 1 & 0 & 5 & -13 & -4 \\
0 & 0 & 1 & -1 & 4 & 1
\end{array}\right]} \\
& A^{-1} \text { exists } \\
& \text { and } A^{-1}=\left[\begin{array}{ccc}
-6 & 18 & 5 \\
5 & -15 & -4 \\
-1 & 4 & 1
\end{array}\right]
\end{aligned}
$$

