February 20 Math 2306 sec. 52 Spring 2023

Section 7: Reduction of Order

We’ll focus on second order, linear, homogeneous equations. Recall
that such an equation has the form

a?y
adx?

+ a1(x )Q + ap(x)y =0.

2(X) gz ax

Let us assume that a>(x) # 0 on the interval of interest. We will write
our equation in standard form

o2 d
Sr TP+

where P = a;/ap and Q = ag/ ao.
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%Y+ P(X)% + Q(x)y =0

Some things to keep in mind:

» Every fundamental solution set has two linearly independent
solutions y; and yo,

» The general solution will be

y = ciyi(x) + caye(X).

Suppose we know one solution y1(x). This section is about a process
called Reduction of order. Reduction of order is a method for finding
a second solution by assuming that

Ya(x) = u(x)y1(x).

The goal is to find the unknown function wv.
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Context

> We start with a second order, linear, homogeneous ODE in
standard form

d’y dy B
W + P(X)a + Q(X)y =0.

\4

We know one solution y1. (Keep in mind that y; is a known!)

> We know there is a second linearly independent solution (section
6 theory says so).

> We try to find y» by guessing that it can be found in the form

Ya(x) = u(x)y1(x)

where the goal becomes finding u.

» Due to linear independence, we know that v cannot be
constant.
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Example

Find the general solution to the ODE 2

xcy" —xy'+y=0forx >0
given that y1(x) = x is one solution.
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w= 3 K dx T Dy
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Generalization

Consider the equation in standard form with one known solution.

Determine a second linearly independent solution.

% dy -
e + P(x)a + Q(x)y =0, yy(x) —is known.
Assuwme W = W\, o ks ODE
\ \ .
= Uy,

\ Voo Voo "
kﬁz”’-\A\ \O\+U\ﬂu W « U

We know that yi + P(x)y; + Q(x)y; = 0.
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oy
ax?

+ P(x)% +Q(x)y =0

Reduction of Order Formula

For the second order, homogeneous equation in standard
form with one known solution yy, a second linearly inde-
pendent solution y» is given by

e—fP(x) ax
Yo(x) = y1(x)u(x) where u(x) :/de
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Example

Find the solution of the IVP where one solution of the ODE is given.
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