February 21 Math 3260 sec. 52 Spring 2022

Section 2.1: Matrix Operations
Scalar Multiplication: For $m \times n$ matrix $A=\left[a_{i j}\right]$ and scalar c

$$
c A=\left[c a_{i j}\right] .
$$

Matrix Addition: For $m \times n$ matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$

$$
A+B=\left[a_{i j}+b_{i j}\right] .
$$

Matrix Multiplication: If A is $m \times n$ and B is $n \times p$, then the product $A B$ is defined by

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right] .
$$

The product $A B$ is $m \times p$. Moreover, if $A B=C=\left[c_{i j}\right]$, then

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Product of Matrices

The product $A B$ is only defined if the number of columns of A (the left matrix) matches the number of rows of B (the right matrix).

AB

Properties of Scalar Multiplication and Matrix Addition

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then
(i) $A+B=B+A$
(iv) $r(A+B)=r A+r B$
(ii) $(A+B)+C=A+(B+C)$
(v) $(r+s) A=r A+s A$
(iii) $A+O=A$
(vi) $r(s A)=(r s) A$
where O is the zero matrix of the same size as A.

Properties of the Product of Matrices

Theorem: Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then
(i) $A(B C)=(A B) C$
(ii) $A(B+C)=A B+A C$
(iii) $(B+C) A=B A+C A$

$$
\begin{aligned}
& \text { The order } \\
& \text { in those } \\
& \text { products } \\
& \text { cont be } \\
& \text { Changed }
\end{aligned}
$$

(iv) $r(A B)=(r A) B=A(r B)$, and
(v) $I_{m} A=A=A I_{n}$

Caveats!

(1) Matrix multiplication does not commute! In general $A B \neq B A$
(2) The zero product property does not hold! That is, if $A B=O$, one cannot conclude that one of the matrices A or B is a zero matrix.
(3) There is no cancelation law. That is, $A B=C B$ does not imply that A and C are equal.

Compute $A B$ and $B A$ where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$.

$A B$	$B A$
2×2	2×2
mo x 2×2	2×2
match	

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
-3 & 6
\end{array}\right] \\
& B A=\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 11 \\
-1 & 4
\end{array}\right]
\end{aligned}
$$

$$
1 \cdot(4)+2(-1)=2
$$

Both products are defined, but $A B \neq B A$.

Compute the products $A B, C B$, and $B B$ where $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, $B=\left[\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right]$, and $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

All products are defined and will be 2×2.

$$
\begin{array}{ll}
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] & \text { Note } A B=C B \\
C B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] & \text { but } A \neq C \\
B B=\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] & \text { but } B \neq 0
\end{array}
$$

Matrix Powers

Positive Integer Powers: If A is square-meaning A is an $n \times n$ matrix for some $n \geq 2$, then the product $A A$ is defined. For positive integer k, we'll define

$$
\begin{array}{ll}
& A^{2}=A A \\
A^{k}=A A^{k-1} . & A^{3}=A A^{2} \\
& A^{4}=A A^{3}
\end{array}
$$

Zero Power: We define $A^{0}=I_{n}$, where I_{n} is the $n \times n$ identity matrix.

Transpose

Definition: Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The transpose of A is the $n \times m$ matrix denoted and defined by

$$
A^{T}=\left[a_{j j}\right] .
$$

For example, if

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \text { then } A^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right] .
$$

Example

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

Compute A^{T}, B^{T}, the transpose of the product $(A B)^{T}$, and the product $B^{T} A^{T}$.

We already computed $A B=\left[\begin{array}{ccc}-1 & 12 & -16 \\ -2 & -8 & 8\end{array}\right]$ in a previous example.

$$
A^{\top}=\left[\begin{array}{cc}
1 & -2 \\
-3 & 2
\end{array}\right], \quad B^{\top}=\left[\begin{array}{cc}
2 & 1 \\
0 & -4 \\
2 & 6
\end{array}\right]
$$

$$
\begin{aligned}
& (A B)^{\top}=\left[\begin{array}{cc}
-1 & -2 \\
12 & -8 \\
-16 & 8
\end{array}\right] \\
& B^{\top} A^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& B^{\top} A^{\top}=\left[\begin{array}{cc}
2 & 1 \\
0 & -4 \\
2 & 6
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
12 & -8 \\
-16 & 8
\end{array}\right] \\
& A^{\top} B^{\top} \\
& 2 \times 2 \quad 3 \times 2
\end{aligned}
$$

Theorem: Properties-Matrix Transposition

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(A+B)^{T}=A^{T}+B^{T}$
(iii) $(r A)^{T}=r A^{T}$
(iv) $(A B)^{T}=B^{T} A^{T}$

In general

$$
(A B C)^{\top}=C^{\top} B^{\top} A^{\top}
$$

$$
\left(A_{1} A_{2} \cdots A_{k}\right)^{\top}=A_{k}^{\top} \cdots A_{2}^{\top} A_{1}^{\top}
$$

Section 2.2: Inverse of a Matrix

Consider the scalar equation $a x=b$. Provided $a \neq 0$, we can solve this explicity

$$
x=a^{-1} b
$$

where a^{-1} is the unique number such that $a a^{-1}=a^{-1} a=1$.
If A is an $n \times n$ matrix, we seek an analog A^{-1} that satisfies the condition

$$
A^{-1} A=A A^{-1}=I_{n}
$$

If such matrix A^{-1} exists, we'll say that A is nonsingular (a.k.a. invertible). Otherwise, we'll say that A is singular.

Theorem (2×2 case)

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is singular.

The quantity $a d-b c$ is called the determinant of A and may be denoted in several ways

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

Find the inverse if possible
(a) $\quad A=\left[\begin{array}{cc}3 & 2 \\ -1 & 5\end{array}\right]$

$$
A^{-1}=\frac{1}{17}\left[\begin{array}{rr}
5 & -2 \\
1 & 3
\end{array}\right]
$$

$$
\operatorname{dt}(A)=3(5)-(-1)(2)=15+2=17
$$

This is not zero, A^{-1} exists.
(b) $A=\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right]$

$$
\operatorname{det}(A)=3(4)-6(2)=0
$$

Ais singular, A^{-1} besant exist

