February 22 Math 2306 sec. 52 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

 We consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

If we put this in normal form, we get

$$
\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \frac{d y}{d x}-\frac{c}{a} y .
$$

Question: What sorts of functions y could be expected to satisfy

$$
\begin{gathered}
y^{\prime \prime}=\text { (constant) } y^{\prime}+(\text { constant }) y ? \\
y=e^{m x}, m \text {-constant } \quad y=\sin (k x), \text { or } y=\cos (k x) \\
k-\text { constant }
\end{gathered}
$$

${ }^{1}$ We'll extend the result to higher order at the end of this section. February 20,2023

We look for solutions of the form $y=e^{m x}$ with m constant.

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

$$
\begin{array}{ll}
y=e^{m x} & a y^{\prime \prime}+b y^{\prime}+c y=0 \\
y^{\prime}=m e^{m x} & a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c\left(e^{m x}\right)=0 \\
y^{\prime \prime}=m^{2} e^{m x} & e^{m x}\left(a m^{2}+b m+c\right)=0
\end{array}
$$

This will hold if m soles the quadratic equation

$$
a m^{2}+b m+c=0
$$

For such $m, y=e^{m x}$ will solve the $O D \bar{I}$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Example
Find the general solution of the ODE.

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
m^{2}-2 m-2=0
$$

Completing the square

$$
\begin{aligned}
& m^{2}-2 m+1-1-2=0 \\
& (m-1)^{2}-3=0 \Rightarrow(m-1)^{2}=3 \\
& m-1= \pm \sqrt{3}
\end{aligned}
$$

$$
m=1 \pm \sqrt{3} \text { two distinct real }
$$ roots.

$$
\begin{aligned}
& m_{1}=1+\sqrt{3}, m_{2}=1-\sqrt{3} \\
& y_{1}=e^{(1+\sqrt{3}) x}, y_{2}=e^{(1-\sqrt{3}) x}
\end{aligned}
$$

The genera solution is

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0
$$

There is only one real, double root, $m=\frac{-b}{2 a}$.
Use reduction of order to find the second solution to the equation (in standard form)

$$
\begin{aligned}
& y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \quad \text { given one solution } y_{1}=e^{-\frac{b}{2 a} x} \\
& y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int p(x) d x}}{\left(y_{1}\right)^{2}} d x \\
& P(x)=\frac{b}{a},-\int R(x) d x=\int-\frac{b}{a} d x=-\frac{b}{a} x
\end{aligned}
$$

$$
\begin{gathered}
\left(y_{1}\right)^{2}=\left(e^{\frac{-b}{2 a} x}\right)^{2}=e^{-2\left(\frac{b}{2 a} x\right)}=e^{\frac{-b}{a} x} \\
u=\int \frac{e^{\frac{-b}{2} x}}{e^{\frac{-b}{2} x}} d x=\int 1 d x=x \\
y_{2}=u y_{1}, \quad y_{1}=e^{\frac{-b}{2 a} x} \\
y_{2}=x e^{\frac{-b}{2 a} x}
\end{gathered}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

