February 24 Math 2306 sec. 51 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

We were considering second order, linear, homogeneous ODEs with constant coefficients.

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$
, with $a \neq 0$.

We looked for solutions of the form $y = e^{mx}$ for constant m and found that we'll get such solutions is m is a root of the characteristic equation

$$am^2 + bm + c = 0.$$

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

There are three cases:

- I $b^2 4ac > 0$ and there are two distinct real roots $m_1 \neq m_2$
- II $b^2 4ac = 0$ and there is one repeated real root $m_1 = m_2 = m$
- III $b^2 4ac < 0$ and there are two roots that are complex conjugates $m_1 = \alpha + i\beta$ and $m_2 = \alpha i\beta$.

We talked about the first two and need to consider the last one.

2/22

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$.

There are two different roots m_1 and m_2 . A fundamental solution set consists of

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root m, then a fundamental solution set¹ to the second order equation consists of

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

¹See workbook exercise 2(b) from sec. 6 on linear independence.

Example

Solve the IVP

$$y'' + 6y' + 9y = 0$$
, $y(0) = 4$, $y'(0) = 0$
Solve the ODE:
Characteristic egn:
 $m^2 + 6m + 9 = 0$
 $(m+3)^2 = 0 \implies m = -3$ double root
 $y_1 = e^{-3x}$
 $y_2 = xe^{-3x}$

The general solution is

$$\lambda = C' = \frac{1}{2} \times + C^2 \times e^{\frac{1}{2} \times \frac{1}{2}}$$

$$y' = -3c, e^{3x} + c_2 e^{3x} - 3c_2 \times e^{3x}$$

 $y(0) = c, e^{3x} + c_2 e^{3x} - 3c_2 \times e^{3x}$

$$-3C_1 + (z = 0)$$

 $C_2 = 3C_1 = 3(4) = 12$

February 22, 2023

The solution to the IVP is $y = 4 e^{3x} + 12x e^{-3x}$

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

The two roots of the characteristic equation will be

$$m_1 = \alpha + i\beta$$
 and $m_2 = \alpha - i\beta$ where $i^2 = -1$.

We want our solutions in the form of *real valued* functions. We start by writing a pair of solutions

$$Y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x}e^{i\beta x}$$
, and $Y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x}e^{-i\beta x}$.

We will use the **principle of superposition** to write solutions y_1 and y_2 that do not contain the complex number i.

Deriving the solutions Case III

Recall Euler's Formula²: $e^{i\theta} = \cos \theta + i \sin \theta$.

$$Y_{1} = e^{\alpha x}e^{i\beta x} = e^{dx} \left(\cos(\beta x) + i \sin(\beta x) \right)$$

$$= e^{dx} \cos(\beta x) + i e^{x} \sin(\beta x)$$

$$Y_{2} = e^{\alpha x}e^{-i\beta x} = e^{dx} \left(\cos(\beta x) - i \sin(\beta x) \right)$$

$$= e^{dx} \cos(\beta x) - i e^{x} \sin(\beta x)$$

$$Y_{1} = \frac{1}{2} \left(Y_{1} + Y_{2} \right) = \frac{1}{2} \left(Z e^{dx} \cos(\beta x) \right) = e^{dx} \cos(\beta x)$$

$$y_{2} = \frac{1}{2i} \left(Y_{1} - Y_{2} \right) = \frac{1}{2i} \left(Z e^{dx} \sin(\beta x) \right) = e^{dx} \sin(\beta x)$$

$$\frac{1}{2} \text{As the sine is an odd function } e^{-i\theta} = \cos\theta - i \sin\theta.$$

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).$$

Example

Find the general solution of
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0$$
.

Char. egn.
$$m^2 + 4m + 6 = 0$$

Let's complete the square
 $m^2 + 4m + 4 - 4 + 6 = 0$
 $(m+2)^2 + 2 = 0 \Rightarrow (m+2)^2 = -2$
 $m+2 = \pm \sqrt{-2}$
 $m+3 = \pm \sqrt{2}$

12/22

$$M = -2 \pm \sqrt{2} i$$

Complex case ω $Q = -2$, $\beta = \sqrt{2}$
 $-2t$ $(-2t)$

The general solution

Higer Order Linear Constant Coefficient ODEs

▶ The same approach applies. For an n^{th} order equation, we obtain an n^{th} degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos(\beta x)$ and $e^{\alpha x} \sin(\beta x)$ for each pair of complex roots.

► It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, m may be a root of multiplicity k where 1 < k < n.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), \ e^{\alpha x}\sin(\beta x), \quad xe^{\alpha x}\cos(\beta x), \ xe^{\alpha x}\sin(\beta x), \dots,$$

$$x^{k-1}e^{\alpha x}\cos(\beta x), \ x^{k-1}e^{\alpha x}\sin(\beta x)$$

Example

Find the general solution of the ODE.

$$y'''-3y''+3y'-y=0$$

Ch. eqn:
 $m^3-3m^2+3m-1=0$
 $(m-1)^3=0$
 $m=1$
 $m=$

The general solution

y=c, ext(2xext) + (3x2ext)