February 24 Math 2306 sec. 51 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

We were considering second order, linear, homogeneous ODEs with constant coefficients.

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

We looked for solutions of the form $y=e^{m x}$ for constant m and found that we'll get such solutions is m is a root of the characteristic equation

$$
a m^{2}+b m+c=0
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$.

We talked about the first two and need to consider the last one.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set ${ }^{1}$ to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x} .
$$

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

Solve the ODE,
Characteristic eqn.

$$
\begin{aligned}
& m^{2}+6 m+9=0 \\
& (m+3)^{2}=0 \Rightarrow m=-3 \text { double }
\end{aligned}
$$

$$
y_{1}=e^{-3 x}, y_{2}=x e^{-3 x}
$$

The general solution is

$$
y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}
$$

Apply $y(0)=4, y^{\prime}(0)=0$

$$
\begin{array}{r}
y^{\prime}=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x} \\
y(d)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}=4 \Rightarrow c_{1}=4 \\
y^{\prime}(0)=-3 c_{1} e^{0}+c_{2} e^{0}-3 c_{2} \cdot 0 \cdot e^{0}=0 \\
-3 c_{1}+c_{2}=0 \\
c_{2}=3 c_{1}=3(4)=12 \\
y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}, c_{1}=4, \quad c_{2}=12
\end{array}
$$

The solution to the IVP is

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } \quad b^{2}-4 a c<0
$$

The two roots of the characteristic equation will be

$$
m_{1}=\alpha+i \beta \text { and } m_{2}=\alpha-i \beta \text { where } i^{2}=-1 .
$$

We want our solutions in the form of real valued functions. We start by writing a pair of solutions

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

We will use the principle of superposition to write solutions y_{1} and y_{2} that do not contain the complex number i.

Deriving the solutions Case III
Recall Euler's Formula ${ }^{2}$: $e^{i \theta}=\cos \theta+i \sin \theta$.

$$
\begin{aligned}
y_{1}=e^{\alpha x} e^{i \beta x} & =e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
y_{2}=e^{\alpha x} e^{-i \beta x} & =e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

nt

$$
\begin{aligned}
& y_{1}=\frac{1}{2}\left(Y_{1}+\varphi_{2}\right)=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x) \\
& y_{2}=\frac{1}{2 i}\left(Y_{1}-\varphi_{2}\right)=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

${ }^{2}$ As the sine is an odd function $e^{-i \theta}=\cos \theta-i \sin \theta$.

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c<0
$$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x) \quad \text { and } \quad y_{2}=e^{\alpha x} \sin (\beta x)
$$

The general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Example

Find the general solution of $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0$.
Char. eqn. $\quad m^{2}+4 m+6=0$
Let's complete the square

$$
\begin{gathered}
m^{2}+4 m+4-4+6=0 \\
(m+2)^{2}+2=0 \Rightarrow(m+2)^{2}=-2 \\
m+2= \pm \sqrt{-2} \\
m+2= \pm \sqrt{2} i
\end{gathered}
$$

$$
m=-2 \pm \sqrt{2} i
$$

complex case wi $\alpha=-2, \beta=\sqrt{2}$

$$
x_{1}=e^{-2 t} \cos (\sqrt{2} t), x_{2}=e^{-2 t} \sin (\sqrt{2} t)
$$

The general solution

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Higer Order Linear Constant Coefficient ODEs

$$
y=e^{m x}
$$

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$ for each pair of complex roots.
- It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an $n^{\text {th }}$ degree polynomial, m may be a root of multiplicity k where $1 \leq k \leq n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Example
Find the general solution of the ODE.

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Ch. eqn: $\quad m^{3}-3 m^{2}+3 m-1=0$

$$
\begin{gathered}
(m-1)^{3}=0 \\
m=1+5 \cdot 0) e \text { root } \\
y_{1}=e^{1 x}, y_{2}=x e^{1 x}, y_{3}=x^{2} e^{1 x}
\end{gathered}
$$

The genera solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

