February 25 Math 3260 sec. 52 Spring 2022

Section 2.2: Inverse of a Matrix
Question: Given an $n \times n$ matrix A, is there a matrix A^{-1} that satisfies the condition

$$
A^{-1} A=A A^{-1}=I_{n} .
$$

If such matrix A^{-1} exists, we'll say that A is nonsingular (a.k.a. invertible). Otherwise, we'll say that A is singular.

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_{n}. Moreover, if

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A=I_{n}, \quad \text { then } \quad A=\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} I_{n} .
$$

That is,

$$
A^{-1}=\left[\left(E_{k} \cdots E_{2} E_{1}\right)^{-1}\right]^{-1}=E_{k} \cdots E_{2} E_{1} .
$$

The sequence of operations that reduces A to I_{n}, transforms I_{n} into A^{-1}.

This last observation-operations that take A to I_{n} also take I_{n} to A^{-1}-gives us a method for computing an inverse!

Algorithm for finding A^{-1}

To find the inverse of a given matrix A :

- Form the $n \times 2 n$ augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If $\operatorname{rref}(A)$ is I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- If $\operatorname{rref}(A)$ is $\operatorname{NOT} I$, then A is not invertible.

Remarks: We don't need to know ahead of time if A is invertible to use this algorithm.
If A is singular, we can stop as soon as it's clear that $\operatorname{rref}(A) \neq I$.

Examples: Find the Inverse if Possible

$$
\begin{aligned}
& \text { (b) }\left[\begin{array}{ccc}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4
\end{array}\right]=A \quad \text { set } u p \quad[A I] \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
-4 & -7 & 3 & 0 & 1 & 0 \\
-2 & -6 & 4 & 0 & 0 & 1
\end{array}\right]} \\
& 4 R_{1}+R_{2} \rightarrow R_{2} \\
& 2 R_{1}+R_{3} \rightarrow R_{3} \\
& \begin{array}{llllll}
4 & 8 & -4 & 4 & 0
\end{array} \\
& -4-73010 \\
& \begin{array}{rrrrrr}
2 & 4 & -2 & 2 & 0 & 0 \\
-2 & -6 & 4 & 0 & 0 & 1
\end{array}
\end{aligned}
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & -2 & 2 & 2 & 0 & 1
\end{array}\right]} \\
2 R_{2}+R_{3} \rightarrow
\end{array} R_{3} \quad \begin{array}{lllllll}
& 0 & 2 & -2 & 8 & 2 & 0 \\
0 & -2 & 2 & 2 & 0 & 1 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & 0 & 0 & 10 & 2 & 1
\end{array}\right] .
$$

The row 3 column 3 position is not a pivot position. Hence A is not row equivalent to I. A is singular.

Try it

Try to find A^{-1} where $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ by doing row reduction on the augmented matrix

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right] \quad A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & \frac{-1}{2}
\end{array}\right]
$$

Section 2.3: Characterization of Invertible Matrices

Given an $n \times n$ matrix A, we can think of

- A matrix equation $A \mathbf{x}=\mathbf{b}$;
- A linear system that has A as its coefficient matrix;
- A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$;
- Not to mention things like its pivots, its rref, the linear dependence/independence of its columns, blah blah blah...

Question: How is this stuff related, and how does being singular or invertible tie in?

Theorem: Suppose A is $n \times n$. The following are

 equivalent. ${ }^{1}$(a) A is invertible.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A are linearly independent.
(f) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one to one.
(g) $\boldsymbol{A} \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There exists an $n \times n$ matrix C such that $C A=I$.
(k) There exists an $n \times n$ matrix D such that $A D=I$.
(I) A^{T} is invertible.
${ }^{1}$ Meaning all are true or none are true.

Theorem: (An inverse matrix is unique.)
Let A and B be $n \times n$ matrices. If $A B=I$, then A and B are both invertible with $A^{-1}=B$ and $B^{-1}=A$.

To show this, suppose $A B=I$ and consider the homo geneous equation

$$
B \vec{x}=\overrightarrow{0} .
$$

Multiply on the left by A.

$$
\begin{aligned}
A B \vec{x} & =A \overrightarrow{0} \\
I \vec{x} & =\overrightarrow{0} \quad \Rightarrow \quad \vec{x}=\overrightarrow{0}
\end{aligned}
$$

Hence $B{ }_{x}^{x}=0$ has only the trivia solution meaning B is invertible. $((d) \Rightarrow(a))$
Now the matrix \vec{B}^{-1} exists. From

$$
A B=I
$$

Multiply on the right by B^{-1}

$$
\begin{aligned}
A B B^{-1} & =I B^{-1} \\
\Rightarrow A I & =I B^{-1} \Rightarrow A=B^{-1}
\end{aligned}
$$

It follows that A is invertible and

$$
A^{-1}=\left(B^{-1}\right)^{-1}=B
$$

