February 27 Math 2306 sec. 51 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients

We were considering linear, constant coefficient, homogeneous equations.

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0
$$

where each a_{i} is constant.
We assume that $y=e^{m x}$ for constant m, and obtain such solutions when m is a solution to the polynomial characteristic equation

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0
$$

$a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0$

- We have to get n linearly independent solutions.
- Complex roots have to appear in conjugate pairs.
- If m_{i} is a root of multiplicity k, we get k solutions

$$
e^{m_{i} x}, \quad x e^{m_{i} x}, \quad x^{2} e^{m_{i} x}, \ldots, x^{k-1} e^{m_{i} x}
$$

- If $\alpha \pm i \beta$ is a complex conjugate pair of multiplicity k, we get $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- The general solution is the linear combination

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

Example
Find the general solution of the ODE.

$$
y^{(4)}+3 y^{\prime \prime}-4 y=0
$$

$4^{\text {th }}$ arden, a fundamental solution set will have four solutions.

Characteristic eqn

$$
m^{4}+3 v^{2}-4=0
$$

factors $\quad\left(m^{2}+4\right)\left(m^{2}-1\right)=0$

$$
\left(m^{2}+4\right)(m-1)(m+1)=0
$$

$$
\begin{aligned}
& m^{2}+4=0 \Rightarrow m^{2}=-4 \\
& m= \pm \sqrt{-4} \\
& m= \pm 2 i \\
& \text { complex } \alpha \pm i \beta \\
& \alpha=0, \beta=2 \\
& y_{1}= e^{0 x} \cos (2 x)=\cos (2 x) \\
& y_{2}=e^{0 x} \sin (2 x)=\sin (2 x) \\
& m-1=0 \Rightarrow m=1 \\
& m+1=0 \Rightarrow y_{3}= e^{1 x} \\
& m=-1
\end{aligned}
$$

February 24, $2023 \quad 4 / 47$

$$
y_{4}=e^{-1 x}
$$

The geresd solution is

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+c_{3} e^{x}+c_{4} e^{-x}
$$

Example

Consider the ODE

$$
y^{(6)}-6 y^{(4)}+104 y^{\prime \prime \prime}+9 y^{\prime \prime}-312 y^{\prime}+2704 y=0 .
$$

The characteristic equation is

$$
m^{6}-6 m^{4}+104 m^{3}+9 m^{2}-312 m+2704=0
$$

which factors as

$$
\left((m-2)^{2}+9\right)^{2}(m+4)^{2}=0 .
$$

Find the general solution.

$$
\begin{aligned}
& \text { A fundamental solution set } \\
& \text { will how six, linearly in dependant } \\
& \text { solutions }
\end{aligned}
$$

$$
\begin{aligned}
& \left((m-2)^{2}+9\right)^{2}(m+4)^{2}=0 \\
& (m+4)^{2}=0 \Rightarrow m+4=0 \Rightarrow m=-4 \text { docuble } \\
& y_{1}=e^{-4 x}, y_{2}=x e^{-4 x} \\
& \left((m-2)^{2}+9\right)^{2}=0 \Rightarrow(m-2)^{2}+9=0 \\
& (m-2)^{2}=-9 \\
& m-2= \pm \sqrt{-9} \\
& m-2= \pm 3 i \\
& m=2 \pm 3 i
\end{aligned}
$$

$$
\begin{array}{ll}
y_{3}=e^{2 x} \cos (3 x) & y_{5}=x e^{2 x} \cos (3 x) \\
y_{4}=e^{2 x} \sin (3 x) & y_{6}=x e^{2 x} \sin (3 x)
\end{array}
$$

The geverdsolution is

$$
\left\{\begin{aligned}
y=c_{1} e^{-4 x}+c_{2} x e^{-4 x} & +c_{3} e^{2 x} \cos (3 x)+c_{4} e^{2 x} \sin (3 x)+ \\
& +c_{5} x e^{2 x} \cos (3 x)+c_{6} x e^{2 x} \sin (3 x)
\end{aligned}\right.
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, $e^{k x}$
- sines and/or cosines, $\sin (k x)$ or $\cos (k x)$
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example ${ }^{1}$
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

The left is constant coef. and the right is a polynomid.

$$
g(x)=8 x+1 \quad 1^{\text {st }} \text { desiree polynomial }
$$

well focus on $\mathrm{y}^{\prime} p$. Let's "guess"
that y_{p} is the some kind of function as $g(x)$ iii. y_{p} is a $1^{\text {st }}$ degree poly
${ }^{1}$ We're only ignoring the y_{c} part to illustrate the process.

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

Suppore $y_{p}=A x+B$. Sub this in.

$$
\begin{gathered}
y_{p}^{\prime}=A \\
y_{p}^{\prime \prime}=0 \\
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1 \\
0-4(A)+4(A x+B)=8 x+1 \\
4 A x+(-4 A+4 B)=8 x+1
\end{gathered}
$$

Match like terms

$$
\begin{gathered}
4 A=8 \\
-4 A+4 B=1
\end{gathered}
$$

$$
\begin{aligned}
A=2, \quad 4 B & =1+4 A=1+4(2)=9 \\
B & =\frac{9}{4}
\end{aligned}
$$

so $y_{p}=2 x+\frac{9}{4}$ is a particular solution

Motivating Example

Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

We found the particular solution

$$
y_{p}=2 x+\frac{9}{4}
$$

by

- guessing that y_{p} is the same kind of function as g,
- setting it up with undetermined coefficients (A, B, etc.), and
- substituting it into the ODE to find the coefficients that work.

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

Focus on ye only.

$$
g(x)=6 e^{-3 x} \quad \text { constant times } e^{-3 x}
$$

Set $y_{p}=A e^{-3 x} \quad$ sub into $O D E$

$$
\begin{aligned}
& y_{p}^{\prime}=-3 A e^{-3 x} \\
& y_{p}^{\prime \prime}=9 A e^{-3 x} \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{-3 x}
\end{aligned}
$$

$$
\begin{gathered}
9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4\left(A e^{-3 x}\right)=6 e^{-3 x} \\
25 A e^{-3 x}=6 e^{-3 x}
\end{gathered}
$$

matching like terms

$$
\begin{aligned}
25 A & =6 \\
A & =\frac{6}{25}
\end{aligned}
$$

So $y_{p}=\frac{6}{25} e^{-3 x}$

The Initial Guess Must Be General in Form

Find a particular solution to $\quad y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}$

$$
g(x)=16 x^{2} \quad \text { monoxide is } x^{2}
$$ quadratic

Suppose we consida g to be a nonomid.
Set $y_{p}=A x^{2} \quad \operatorname{sub}$

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x \\
& y_{p}^{\prime \prime}=2 A \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2} \\
& 4 A x^{2}-8 A x+2 A=16 x^{2}+0 x+0
\end{aligned}
$$

matching

$$
\left.\begin{array}{rl}
4 A & =16 \\
-8 A & =0 \\
2 A & =0
\end{array}\right\} \Rightarrow \quad 4=0
$$

Our initial guess was wrong! We didn't account for x or constant terms.

$$
y_{p}=A x^{2}+B x+C
$$

This would be the correct form for the particular solution.

